Защита аккумулятора при понижении напряжения

Защита аккумулятора при понижении напряжения

Устройство защиты аккумуляторной батареи от глубокого разряда «УЗАБ».

Автор: Александр Давыдов
Опубликовано 16.08.2009

Всем доброго времени суток. Отдельно приветствую тех, кого заинтересовала эта статья. Данное творение вышло из под лап скромнейшего кота Кулибина в соавторстве с уважаемым котом i8086 и несравненной нашей кошечкой Анастасией Попковой. Речь в этой статье пойдет об устройстве защиты аккумуляторной батареи от глубокого разряда, которое далее будем называть УЗАБ.
УЗАБ предназначен для предотвращения глубокого разряда аккумуляторных батарей, который автоматически отключает нагрузку при уменьшении напряжения батареи до минимально допустимого значения. Конструктивные решения позволяют использовать УЗАБ везде, где используются кислотные или щелочные батареи, где отсутствует постоянный контроль за состоянием аккумуляторов, то есть там, где важно обеспечить предотвращение необратимых процессов, связанных с глубоким разрядом.
Вас заинтересовала эта идея? Не спешите! Еще несколько маленьких отступлений, перед тем, как я опишу саму схему. Идея создания такого устройства возникла давно. Первый, кто заговорил об этом, был i8086 . Он собрал преобразователь для длительного автономного питания своего ноутбука от автомобильного аккумулятора. Но преобразователь не отключался при снижении напряжения ниже 10В, а продолжал работать и разряжать аккумулятор.
С одной стороны это хорошо — дольше хватает времени работы от аккумулятора. А с другой стороны — для аккумулятора крайне нежелателен разряд ниже порогового для него напряжения в 10В. Часто приходилось периодически контролировать напряжение на клеммах аккумулятора с помощью цифрового мультиметра, что очень неудобно, а если недосмотришь, то и аккумулятор придется скоро поменять из-за глубокой разрядки.
В связи с этим, ваш покорный кот Кулибин и уважаемый i8086 начали поиски подходящего УЗАБ для этой цели. Перелопатив немало информации в Интернете и не найдя ничего подходящего я поделился данной проблемой с уважаемой Настей. И о чудо! Она предложила оригинальное включение операционного усилителя OP07 как компаратора совместно со стабилизатором 78L05.
Ниже схема из первоисточника.

Читайте также:  Получить уровень заряда аккумулятора

Обсудив данную схему с i8086, мы решили ее немного доработать, внеся некоторые сервисные функции управления и индикации. Результатом наших творческих изысканий явилась эта схема:

После сборки схема прошла тестовые испытания, которые закончились великолепно. Рассмотрим имеющиеся сервисные функции в схеме:
1) Индикация пониженного напряжения питания. При снижении напряжения до 10,5 В загорается светодиод.
2) При снижении напряжения до 10,0 В происходит полное отключение нагрузки и схемы контроля от аккумулятора.
3) Благодаря подстроечным резисторам, напряжения срабатывания компараторов можно регулировать для конкретных типов аккумуляторов.
4) После аварийного отключения повторное включение возможно при напряжении выше 11,0 В, нажатием на кнопку «ON».
5) Если есть необходимость отключить нагрузку вручную, достаточно нажать кнопку «OFF».
6) Полезное преимущество — защита от переполюсовки (не соблюдения полярности) при подключении к аккумулятору. В этом случае УЗАБ и подключенное устройство просто не включатся.
Преимущество предложенного решения с использованием реле трудно сравнить с простейшей защитой — включением в обратной полярности мощного диода, когда в случае неправильной полярности сгорит предохранитель. В данном случае ничего сгореть не может, так как элементарно не включится.

Допускается использование подстроечных резисторов любого номинала в диапазоне от 10 кОм до 100 кОм.
Стабилизатор напряжения 78L05 на напряжение стабилизации 5В. Можно применить любой другой аналогичный, например, КР142ЕН5А.
Транзистор КТ815 можно заменить на КТ817 или другой аналогичный соответствующей проводимости.
Диод можно использовать любой маломощный, способный выдержать ток обмотки реле. В нашем варианте использован 1N4007.
Светодиод любой, желательно красного цвета свечения. Мы использовали 5 мм красный светодиод. Можно использовать мигающий светодиод со встроенным генератором для лучшей визуализации. Измерения показали, что нет необходимости установки токоограничивающего резистора, т.к. напряжение на нем равно 2В, а ток ограничивается самим ОУ LM358N.
Реле JZC-20F на 10А 12В, возможно применение и других аналогичных реле.
Кнопки применены разных цветов, зеленая на включение, красная — на отключение.
А теперь и фото самого контроллера УЗАБ, которые любезно предоставлены уважаемым i8086.

Читайте также:  Где посмотреть состояние аккумулятора ноутбука

Собранное без ошибок и из исправных деталей устройство начинает работать сразу, наладка заключается в установке нужных порогов напряжения зажигания светодиода и отключения реле. Как ранее говорилось, это устройство успешно используется совместно с преобразователем для ноутбука, которые смонтированы в единый корпус. Необходимо отметить предложение Насти использовать данное схемное решение в автоматических зарядных устройствах, которые будут отключать цепь зарядки аккумулятора при достижении порогового уровня напряжения. На наш взгляд, нам есть над чем поработать!

Источник

Поделки своими руками для автолюбителей

Универсальная схема защиты от понижения или повышения напряжения.

Всем привет, конструируя всевозможные, низковольтные конструкции, иногда возникает необходимость использования специальных узлов, которые защищают схему при превышении или понижении питающего напряжения.

Приведённая схема является очень универсальной и может быть использована например для контроля заряда на аккумуляторе, для защиты источников питания, в частности преобразователей напряжения от повышенного или пониженного входного напряжения.

Схему можно использовать, как в качестве датчика оповещения, так и внедрить в реальную конструкцию, например в преобразователь напряжения, который отключиться если питающее напряжение выше или ниже нормы.

Рассмотрим простой пример, у вас есть повышающий преобразователь на вход, которого нельзя подавать выше 16 вольт и ниже 9. Если подаваемое напряжение выше 16 вольт, может нарушиться работа определенных узлов, также это приводит к нарушению расчетного напряжения на обмотках трансформатора.

При низком же входном напряжении, менее 9 вольт, а такое может быть если аккумулятор разряжен, управляющее напряжение на затворах силовых ключей будет менее 9 вольт, что приведет к неполному отпиранию ключей, как следствие сопротивление открытого канала увеличивается, в итоге повышенный нагрев, а при большой нагрузке выход из строя силовых транзисторов.

Также, инвертор не снабжённой такой защитой, может разрядить аккумулятор в хлам и стать причиной выхода его из строя, из-за глубокого разряда. Любой серьёзный инвертор имеет защиту от повышенного и пониженного входного питания.

Рассмотрим схему и принцип её работы.

Имеем компаратор LM339 — это четыре отдельных компаратора в едином корпусе,

в нашей схеме я задействовал всего два канала, на остальных двух можно построить например защиту от коротких замыканий и перегрева.

Кстати компаратор LM339 можно найти на платах некоторых компьютерных блоков питания, микросхема стоит рядом с шин-контроллером.

Первая часть схемы обеспечивает защиту от повышенного питания,

выход компараторов дополнен транзистором, для управления нагрузкой, также данный транзистор является инвертором.

В коллекторную цепь транзистора подключается нагрузка,

звуковой индикатор, светодиод,

обмотка реле или полевой транзистор,

для управления более мощными нагрузками, если это необходимо.

Имеется источник опорного напряжения в лице стабилитрона ZD1, опорное напряжение через делитель в виде подстроечного многооборотного резистора R3 подаётся на неинвертирующий вход компаратора (7), на инвертирующий вход (6), через делитель подано часть напряжения, которое нужно мониторить.

Введите электронную почту и получайте письма с новыми поделками.

Компаратор отслеживает это напряжение, если оно по каким-то причинам становится больше, увеличивается и напряжение на инверсном входе, компаратор понимает, что между его входами напряжение изменилась и моментально выдаёт на выходе низкий уровень сигнала или массу питания.

Почему массу? Если посмотреть на внутреннюю структуру компаратора,

то всё становится ясно, внутренний выходной транзистор, обратной проводимости, подключён эмиттером к массе, при его отпирании на выходе получим массу питания.

Именно поэтому на выходе схемы я добавил дополнительный транзистор прямой проводимости, он сработает при наличие отрицательного сигнала на базе, а на его коллекторе мы получим плюс питания, то есть транзистор инвертирует сигнал и это нужно например для управления мощным N-канальным силовым мосфетом.

Вторая схема устроена и работает точно таким же образом,

только входы подключены наоборот, в данном случае компаратор сработает, если входное напряжение ниже выставленного порога.

По поводу порога срабатывания, его можно выставить путём вращения подстроечного резистора, по факту он меняет опорное напряжение.

Пример использования — защита от повышенного напряжения для отключения аккумулятора при полном заряде, если у вас есть не автоматическое зарядное устройство, оно может перезарядить аккумулятор, что может привести к плачевным последствиям.

Если устройство дополнить такой схемой, то достаточно выставить порог срабатывания равным напряжению полностью заряженного аккумулятора и устройство автоматически отключится, когда аккумулятор заряжен.

Приведенная схема может работать в достаточно широком диапазоне входных напряжений от пяти до тридцати пяти вольт, ограничено напряжением питания компаратора и токо-гасящим резистором для стабилитрона R1. Именно этот вариант с указанными компонентами рассчитан для работы в диапазоне напряжений, где-то от 6 до 20 вольт, я планировал использовать её для защиты мощного преобразователя напряжения.

Ток покоя схемы всего 10 миллиампер, срабатывает схема очень четко и мгновенно, порог срабатывания можно выставить с точностью до 100 милливольт.

Источник

Оцените статью