Стабилизатор тока для зарядки аккумулятора – зарядное со стабилизацией тока
Чтобы собрать даже самый простой стабилизатор напряжения к зарядному устройству необходимо обладать хоть маломальскими знаниями по физике. Иначе сложно будет понять зависимость физических величин, например, то, как по мере заряда сопротивление аккумулятора увеличивается, ток заряда падает и напряжение растет.
Простое зарядное устройство стабилизатор тока из подручных материалов
Существует огромное число готовых схем и конструкций, позволяющих заряжать автомобильный аккумулятор. Эта статья на тему переделки компьютерного блока питания под автоматическое зарядное устройство автомобильного аккумулятора. В ней рассказывается о том, как собрать автоматический стабилизатор тока с возможностью регулировки выходного тока.
Схема стабилизатора, используемая в нашем собираемом зарядном устройстве, довольно проста и основана на базе операционного усилителя (ОУ) без обратной связи с большим коэффициентом усиления.
В качестве такого операционного усилителя, или правильнее будет его назвать компаратором, используется микросхема LM358. На изображении видно, что она имеет:
- два входа (инвертирующий и неинвертирующий);
- один выход.
Задача LM358 состоит в том, чтобы сбалансировать параметры на выходе путём увеличения или уменьшения напряжения на входах.
Зарядное устройство или простой стабилизатор – это прибор, который:
- сглаживает пульсации сети;
- поддерживает прямую линию графика тока на одном уровне.
Как это осуществляется? В нашем случае на один вход подаётся опорное напряжение, задаваемое с помощью стабилитрона. Второй вход подключен после шунта, предназначенного для роли датчика тока. Когда подключается к выходу разряженный аккумулятор, в цепи возрастает ток и соответственно возникает падение напряжения на низкоомном резисторе. На микросхеме LM358 появляется разность напряжений между двумя входами. Устройство стремится сбалансировать эту разность, тем самым увеличивая параметры на выходе.
Глядя на схему мы видим, что на выход подключен полевой транзистор, который управляет нагрузкой. По мере заряда аккумулятора на клеммах устройства начинает повышаться напряжение, следовательно, начинает расти оно и на одном из входов ОУ. Возникает разность напряжений между входами, которую ОУ пытается выровнять путём уменьшения напряжения на выходе, тем самым уменьшая ток в основной цепи.
В итоге, аккумулятор заряжается до нужного напряжения, то есть выставленного значения на клеммах зарядного устройства. Падение напряжения на резисторе R3 становится минимальным, либо его не будет вообще. При выравнивании напряжения на входах транзистор закрывается, тем самым отключая нагрузку от зарядного устройства.
Особенностью данной схемы является то, что она позволяет ограничивать ток заряда. Делается это с помощью переменного резистора, который включён последовательно в делитель. И собственно поворачивая ручку этого резистора можно изменять параметры на одном из входов. Возникающую разность опять же выравнивают путём увеличения либо уменьшения параметров.
Универсальных схем не бывает. Кого-то интересует вопрос увеличения тока нагрузки. Например, что нужно поменять в схеме для 15 А? Необходимо будет поставить переменник не 5, а 10 кОм. Так же сделав предварительный расчёт и заменив соответствующие элементы, можно запросто настроить схему под свои нужды.
Сборка устройства
Конечно, интересно посмотреть на готовое самодельное изделие, тогда приступим к сборке устройства. В интернет-магазинах существует много компактных плат под эту схему. Стоимость деталей для сборки данного стабилизатора напряжения обойдётся менее двухсот рублей. Если покупать готовый стабилизатор напряжения, придется заплатить в несколько раз больше.
Все стандартные действия сборки не будем описывать, отметим лишь основные моменты. Транзистор надо размещать на теплоотвод. Почему? Потому что схема линейная и при больших токах транзистор будет сильно нагреваться. Из чего изготовить радиатор? Его можно сделать из обычного алюминиевого уголка и закрепить непосредственно на вентилятор блока питания. И, несмотря на то, что по размерам радиатор достаточно небольшой, благодаря интенсивному обдуву он прекрасно справится со своей задачей.
К радиатору прикручивается через термопасту транзистор, в этой схеме он используется полевой, N-канальный IRFZ44 с максимальным током 49 А. Так как радиатор изолирован от основной платы и корпуса, то транзистор приворачивается напрямую без изоляционных прокладок.
Плату стабилизатора через латунную стойку закрепляется на этот же алюминиевый уголок. Для регулировки выходного тока используется переменный резистор на 5 кОМ. Провода, чтобы не болтались, фиксируются пластиковыми стяжками.
В результате, должна получиться следующая схема подключения данного стабилизатора для зарядного устройства.
Блок питания может быть абсолютно любым, как компьютерным блоком питания, так и обычным трансформатором. Шнур для подключения в розетку используется обычный компьютерный.
Всё готово. Можно теперь использовать такой регулируемый стабилизатор напряжения для зарядного устройства. Надо отметить схема простая и недорогая: одновременно выполняет функции стабилизатора и зарядного устройства.
Источник
Communities › Автоэлектрика › Blog › Правильное зарядное устройство для аккумуляторов с десульфатацией (DIY)
Категорически приветствую всех читателей!
Написать данную статью меня побудили несколько факторов: борьба с потенциальным алкоголизмом, желание несколько упорядочить «кашу» из накопившейся информации и, конечно, большое желание помочь единомышленникам. Помощь в постройке аналогичного устройства я всегда готов оказать в копии данной статьи в моём блоге. Но я не буду ничего делать за вас.
В конечном итоге мы получим зарядное устройство с линейной характеристикой выходного тока. Это означает, что зарядка будет происходить в два этапа — постоянным заданным вручную током до набора заданного напряжения, затем постоянным заданным напряжением. При этом выходной ток будет плавно снижаться вплоть до нуля, когда заряд будет полностью окончен. Это самый правильный способ зарядки.
Также мы добавим режим десульфатации аккумуляторной батареи. Такой функцией обладают некоторые заводские зарядные устройства, например, Кедр-Авто 10. Такой зарядник у меня так же имеется, и его режим работы мне не очень нравится: во-первых, он не производит должным образом зарядку постоянным напряжением, а просто падает в дозарядку малым током. Окончания зарядки придется ждать очень долго; во-вторых, в интересующем нас режиме «Цикл» максимальное напряжение целенаправленно увеличено до 15,5 вольт, чтобы устройство не отключалось. Это в конечном итоге приведёт к перезаряду аккумулятора. Использованная у меня реализация лишена этих недостатков.
Ключевые моменты статьи для удобства восприятия и навигации я выделил полужирным шрифтом.
Лирика: данный текст ориентирован на начинающих радиолюбителей, подобных мне самому. Собственно, я сам почти год назад не держал в руках паяльник, пока не набрёл на статью Андрея Голубева про изготовление лабораторного блока питания из компьютерного БП. Не имея четкого представления, зачем он мне впоследствии пригодится, я поставил себе задачу во что бы то не стало разобраться и сделать себе такое устройство. И это мне удалось. Выражаю огромную человеческую благодарность Андрею и Юрию Вячеславовичу за посильную помощь в моих начинаниях. Много крови я у них выпил. Я не повторяю статью Андрея, но постараюсь ключевые моменты переделки раскрыть более подробно, останавливаясь на моментах, которые вызывали у меня много вопросов. Прошу воспринимать данный материал как отчет о проделанной работе. Чтобы понимать, о чем я вообще говорю, вам необходимо изучить вышеупомянутые статьи.
Некоторые здесь и сейчас присутствующие знают, что я человек расчетливый, и не ищущий легких путей. И недавно, промывая подкапотку любимого авто от месячной пыли, обнаружил недобро косящийся на меня красный глаз индикатора плотности в банке аккумуляторной батареи. В связи с никак не радующими глаз ценами на аккумуляторы, да и что угодно в наше время, в принципе, решил, что не стоит оставлять без внимания такой важный элемент автомобиля, как аккумуляторная батарея, пробуждающая 6 цилиндров в сибирские морозы. Готовь сани летом, как говорится. А с другой стороны, не кошерно таскать в гараж лабораторный блок питания, в который вложил душу.
А что нам стоит дом построить?
За период создания вышеупомянутого лабораторника у меня скопилось достаточной количество барахла, которое можно превратить в объект обсуждения – аккумуляторное зарядное устройство.
По сути, это тот же лабораторный блок питания, но с некоторыми ограничениями – минимальное напряжение на выходе равно 14,4В, максимальное 16В, блок питания не стартует без подключенного к выходным клеммам аккумулятора и имеет защиту от переполюсовки. В штатном режиме регулятор напряжения всегда в крайнем левом положении, и напряжение на выходе равно 14,4В. Повышенное напряжение используется для «пинка» запущенным аккумуляторам.
Суть зарядного устройства: обеспечить стабилизированное напряжение 14,4 вольта и заданный ограниченный ток. Проще говоря, в начале процесса зарядки ток будет максимальным, заданным реостатом. По мере заряда батареи, собственное напряжение аккумулятора будет расти. В конце концов, когда напряжение аккумулятора станет 14,4 вольта, блок питания перейдет в режим стабилизации напряжения и станет постепенно снижать ток до нуля. В таком состоянии аккумулятор может находиться сколь угодно долго, и ничего плохого с ним не произойдет.
Мне по вышеупомянутой причине сия поделка обошлась в 0 рублей и 0 копеек, если же все комплектующие покупать поштучно, бюджет может подрасти до 1000 рублей, где большую часть занимают вольтамперметры. От момента задумки до реализации прошла неделя. Делал в основном вечерами, но пару дней посвятил процессу полностью.
На этом описательно-вступительную часть предлагаю считать оконченной и перейти к самому интересному.
Достался в виде трупа блок питания ATX:
Видно следы отвратительного ремонта: силовые ключи и диодные сборки вообще не прикручены к радиаторам. Схема очень схожа с этой:
Что имеем: наша любимая микросхема ШИМ-контроллер TL494; защита, формирование сигнала Power_Good, цепь включения-отключения блока питания PS_ON – на микросхеме LM339. Очень хорошая схема для переделки.
В принципе, все блоки на базе микросхемы TL494 построены одинаково – различия лишь в номиналах компонентов и вариациях схемы защиты. В остальном всё однотипно.
Я поставил себе задачу максимально упростить схему блока питания, дабы во-первых самому не путаться, во вторых иметь возможность удобного монтажа вспомогательных цепей, ну и в третьих – человек я такой, педантичный, не люблю ненужных деталей. Схему блока питания я сократил до такого вида (номиналы и обозначения не стал менять, их вы найдете в статье Андрея):
Цепь PS_ON я сначала удалять не стал, дабы использовать ее впоследствии как выключатель блока питания, однако не учёл, что эта схема работает как триггер. В итоге, схема была удалена.
В итоге плата после стадии разрушения и удаления ненужных цепей выглядела так:
Дежурный источник питания я удалил с корнями, чтобы не занимал драгоценное место на плате, для аккумуляторного зарядника он абсолютно не пригодится, убрал схемы Power_Good и PS_ON, мониторинг выходных напряжений от цепи защиты, отвязал 16 вывод TL494 от схемы защиты, высвободил 1,2, 15, 16 выводы, цепи вторичных выпрямителей полностью выпаял и организовал одну на месте 5-вольтовой, отрезав при этом дорожки от пятивольтовой обмотки трансформатора и припаяв к 12-вольтовой:
Можно сказать, что этот блок принял вариацию АТ блока питания – был удален +3,3В выпрямитель со всеми остальными, схема PS_ON и дежурный источник питания. Есть одно «но»: в АТХ блоке питания для запитки ШИМ используется выход нестабилизированного напряжения с отдельной обмотки дежурного источника питания, за счет этого и запускается блок питания. В АТ БП никакой дежурки нет, поэтому реализован «автозапуск» инвертора: добавлены резисторы с большим сопротивлением между Б-К мощных транзисторов. Это провоцирует приоткрытие последних, что за короткий импульс позволяет набрать на выходе достаточное напряжение, и ШИМ будет питаться уже от выходного напряжения. Следует заметить, что для тестирования блока питания без аккумулятора на выходе такой вариант не годится – я сам столкнулся с этой проблемой – на холостом ходу блок замечательно работал, а при добавлении нагрузки начинал трещать, роняя напряжение. Я сразу сообразил с чем это связано: при подключении нагрузки блок падает в режим стабилизации тока, роняя напряжение по закону Ома. В моем случае это были пара вольт. От такого напряжения ШИМ не будет работать, и прыгнет в автогенерацию, получит импульс, затем снова заглохнет от нагрузки, и далее по кругу. Поэтому, если вы собираетесь делать зарядное устройство из АТ блока питания – уберите резисторы между Б-К силовых ключей и при испытаниях подавайте на ШИМ внешнее питание от 10 до 30 вольт.
Цепь питания микросхемы заведена через диод и резистор на выход вторичного выпрямителя, таким образом, при подключении аккумулятора будет стартовать блок питания. А при положении тумблера в выключенном состоянии мы увидим на дисплее текущее напряжение на аккумуляторе. Побочный эффект — загудит вентилятор охлаждения при наличии аккумулятора на выходных клеммах. От этого можно было бы избавиться, запитав вентилятор от сохраненного дежурного источника питания, либо от пятивольтовой обмотки трансформатора через диодную сборку от 12в обмотки. Мне было лень переделывать.
А теперь давайте разберемся, как заставить блок питания выдавать необходимые нам параметры.
Микросхема TL494 хороша тем, что имеет на борту два усилителя ошибки, работающих по ИЛИ, один из которых либо не используется, либо завязан на схему защиты. Чтобы получить на выходе то или иное значение, предлагаю рассмотреть схему управления. Я взял за основу схему управления Андрея и переделал ее под свои требования.
Предел выходного значения напряжения, либо тока будет соответствовать максимальному напряжению 5В на входах компараторов TL494 (выводы 1, 2, 15, 16)
Итак, нам нужно, чтобы максимальное напряжение было 16 вольт.
Усилители в цепи регулировки напряжения и тока в данной схеме управления включены по дифференциальной схеме.
Рассмотрим усилитель в цепи регулировки напряжения:
Для точной работы дифференциального усилителя необходимо сохранять равенство сопротивлений R1, R3 и R2, R4 в парах.
Зададим R1 = R3 = 4,9 кОм. Можно задать и другую пару резисторов — это не принципиально.
Uвых = Uвх*(Rос/R1), где
R1 — искомые сопротивления (R2, R4 в схеме)
Rос = 4,9 кОм — парные резисторы R1, R3 в схеме
Uвых = 5 вольт — максимальное напряжение на входе компаратора TL494
Uвх = 16 вольт — максимальное выходное напряжение блока питания.
Значит, коэффициент усиления будет равен К = Uвых/Uвх = 5/16 = 0,3125
Соответственно R1 = Rос/К = 4900/0,3125 = 15680 Ом = 15,7 кОм.
Таким образом, на 1 вход TL494 уходит 5В при выходном напряжении 16 вольт. Компаратор стремится сравнять напряжения на своих входах, поэтому на 2 входе для достижения 16 вольт должно быть так же 5 вольт. При уменьшении этого напряжения, пропорционально начнет спадать и напряжение на выходе вторичного выпрямителя, откуда берет свое напряжение наш 10 вход LM2902. Соответственно, регулировку напряжения будем осуществлять, поставив потенциометр 10 кОм между 14 и 2 выводами микросхемы. Чтобы ограничить минимальный порог регулировки напряжения на 14,4 вольтах, рассчитаем необходимое для этого напряжение на 2 выводе TL494: U = 5/16*14,4 = 4,5В.
Значит, нам нужно иметь делитель напряжения на 2 выводе, который не даст напряжению опуститься ниже данного значения. Считаем делитель: в минимальном положении потенциометра верхнее плечо будет равно 10 кОм, тогда, нижнее должно быть 90,9 кОм. Добавляем к потенциометру резистор R15 нужного номинала. Тем самым, мы ограничим диапазон регулировки напряжения на 14,4-16В.
Теперь поговорим о регулировке выходного тока. В лабораторном блоке питания Андрея реализована регулировка напряжения с учётом падения напряжения на шунте. На самом деле, это совсем крошечная нестабильность выходного напряжения в зависимости от нагрузки (при данном шунте — 0,03В при 20А), и для зарядки аккумуляторов вообще не играет никакой роли. По сути, можно просто собрать два делителя на 1 и 2 вывод TL494, а ограничением тока занять всего один операционный усилитель. Мне просто захотелось сделать всё идеально, поэтому моя схема управления аналогична схеме Андрея. Используется второй операционный усилитель DA1.2, включенный так же по дифференциальной схеме. Обратите внимание: R2 в цепи регулировки напряжения подключен после шунта. Это позволит измерить падение напряжения на шунте и проводах, которое потом учтёт ОУ в цепи регулировки напряжения, и напряжение останется стабильным.
Произведём расчет для некоторого шунта с обозначением 50А и 75 мВ: нетрудно догадаться, что это падение напряжения в 0,075В при токе в 50А.
Итак, нам нужно задать предел регулировки тока. Я оставил 10 ампер, хотя мой блок в состоянии выдать больше. Со вторым компаратором принцип тот же – для получения максимального заданного значения необходимо уравнять напряжения на 15 и 16 выводах. Соответственно, задаем наш предел в 10А:
Uвых = Uвх*(Rос/R1), где
R1 — искомое сопротивление (R6, R8 в схеме)
Rос = 20 кОм — парные резисторы R5, R7 в схеме
Uвых = 5 вольт — максимальное напряжение на входе компаратора TL494
Uвх — падение напряжения на шунте под заданным максимальным током.
Считаем Uвх:
— Сопротивление шунта 0,075В 50А Rш = U/I = 0,075/50 = 0,0015 Ом
— При заданном максимальном токе 10А на шунте будет падать Uвх = Rш*I = 0,0015*10 = 0,015В
Значит, коэффициент усиления будет равен К = Uвых/Uвх = 5/0,015 = 200
Соответственно R1 = Rос/К = 20000/333,3 = 60 Ом.
Для полного понимания вышесказанного рекомендую ознакомиться с этой статьей.
На 15 вывод аналогично подключаем реостат и резистором R16 задаем нижний порог регулировки тока 100 мА. Когда аккумулятор окончательно зарядится, блок питания перейдет на режим холостого хода, поддерживая данное состояние батареи.
На третьем ОУ делаем индикацию режима стабилизации напряжения: так как компараторы TL494 работают по ИЛИ, то ограничиваться у нас будет либо ток, либо напряжение – в зависимости от того, что наступит раньше – напряжение достигнет заданного, или же ток. Поэтому, мы соединяем неинвертирующий вход DA1.3 с 1 выводом TL494, а инвертирующий – с 16 выводом, а на выход подключаем непосредственно индикатор. Таким образом, когда напряжение на 1 выводе больше, чем на 16 – на выход ОУ поступает сигнал. Загоревшийся светодиод будет говорить о достижении выставленного напряжения на аккумуляторе. В этом режиме «дозарядки» ток снижается, не давая превысить выставленное напряжение. Окончанием заряда следует считать остановку повышения плотности электролита, но в целом – чем меньше зарядный ток, тем лучше. Полезно подержать аккумулятор в этом режиме несколько дней – будет происходить десульфатация пластин малым током.
Это всё, что я хотел рассказать о схеме управления и принципе её работы.
Изготавливая плату схемы управления, я решил не ломать голову и пойти по пути наименьшего сопротивления, сделав её на отдельной плате (даже двух).
Плата с регуляторами тока и напряжения прикручивается непосредственно к передней стенке блока питания и служит шасси для самих регуляторов и выходных клемм. Вторая плата схемы управления припаяна к основной плате блока питания через 4 ножки по периметру на высвободившееся место бывшего дежурного источника питания.
Что касается дросселей – я намотал первый дроссель на 27 мм сердечнике в два слоя сложенной вдвое эмалью 1,05 мм, число витков — 30. В сумме это 1,74 мм² сечение, позволяющее пропускать 10А. Второй дроссель рекомендую использовать от бывшего пятивольтового фильтра: оптимально 10 витков на ферритовом стержне.
Питание на выходные клеммы поступает через две пары проводов сечением 18AWG, что в сумме дает сечение 1,6 мм², позволяющее пропускать ток «почти» 10 ампер. Во-первых, сечение получается не 1,6, а чуть больше, а во вторых длина проводов минимальна. Так что пока не буду добавлять третий провод, к тому же нет у меня аккумуляторов, активно поедающих 10 ампер. Зато выходные двухметровые «крокодилы» распаял на трех аналогичных проводах.
Вентилятор в моем варианте блока питания работает от выходного напряжения через интегральный стабилизатор LM7812. Я установил его на радиатор выпрямительных диодов в освободившееся место. Важно обеспечить изоляцию корпусов LM7812 и диодных сборок от радиатора, так как при контакте будет короткое замыкание — на среднем выводе LM7812 — земля!
Здесь же видно способ крепления шунта. В связи с ограниченным местом внутри корпуса БП АТХ, места под него ну совсем не осталось. Поэтому пришлось выдумать нехитрое крепление: от удачно расположенной микросхемы LM339 я выпаял целиком всю вторую сторону, что позволило мне наглым образом вкрутить сквозь плату болт и с помощью двух гаек на нужной высоте зафиксировать шунт. С другой стороны шунт поджимают выходные минусовые провода, которые подходят как раз к нему.
А теперь интересное дополнение к этому блоку питания: режим десульфатации. По сути, это простая реализация этого способа, выполненного стационарно, но с некоторыми доработками. Остановимся на них подробнее.
Во-первых, реле поворотов я использовал другой модели: 644.3777. Лампочку в его нагрузку я не ставил — не вижу в ней никакого смысла.
Оно реализовано несколько иначе. Замена конденсатора на 1000 мкФ дала мне увеличение времени задержки замыкания-размыкания до 6 секунд, этого было конечно же мало. Желания городить конденсаторы еще больше у меня не было, срисовав схему печатной платы, стало ясно, что изменять. Были заменены резисторы R2 с 1 кОм на 4,7 кОм и R3 с 7,5 кОм на 20 кОм. Теперь реле разомкнуто 20 секунд и замкнуто 10 секунд. Отлично!
Во-вторых, столкнулся с проблемой: на реле-прерыватель при отсутствии аккумулятора на выходе продолжает поступать питание от выхода БП через нормально замкнутые контакты пятиконтактного реле. После первого срабатывания наступит коллапс, т.к. контакт разомкнется, и реле начнет трещать. Пришлось добавить небольшое третье реле, выдернутое из японского блока навигации, которое будет коммутировать между собой левый контакт реле-прерывателя и верхний контакт пятиконтактного реле. Таким образом, пока на специальном плюсовом разъеме для циклового режима не появится аккумулятор, на питание реле-прерывателя не пойдет питание. Это нам и нужно!
При подключении аккумулятора к основному разъему будет идти обычная зарядка, при подключении к дополнительному разъему — цикловая. В цикловом режиме необходимо выставить зарядный ток, приблизительно равный току, протекающему через нагрузку.
Внимательные читатели заметят бездействующий светодиод режима дозарядки. Это мой косяк плотного монтажа, повредил подводящий провод. Исправлю.
Следует добавить, что при целевом использовании получившегося прибора крайне желательно реализовать защиту от переполюсовки, иначе ваш блок потерпит катастрофу.
Источник