- Зарядка для гелевых аккумуляторов схема
- Самодельное зарядное устройство для гелевых аккумуляторов
- 2 комментариев для “Самодельное зарядное устройство для гелевых аккумуляторов”
- Зарядное устройство для гелевых аккумуляторов на кр142ЕН12А
- Простое бюджетное зарядное устройство для гелевых кислотных аккумуляторов малой и средней емкости
Зарядка для гелевых аккумуляторов схема
Зарядное устройство для герметичных свинцовых (гелевых) аккумуляторов
Автор:
Опубликовано 01.01.1970
Здоровеньки булы, громодяне!
Эта история началась когда мы решили отправиться в лес в ночь с субботы на воскресение — у брата был день варенья, и мы его решили отметить на свежем воздухе под шашлычек и водочку. Стали собираться. Для освещения взяли пару фонарей, для наведения музыкального фона небольшую магнитолку-бумбокс. Разумеется, для всего этого купили батарейки, что обошлось нам в кругленькую сумму. С рожами счастливых идиотов мы вломились в лес и бойко приступили к сборке дров, трезво (пока еще) рассудив, что было бы неплохо наломать этих самых дров пока не стемнело. А дров надо было на два костра — для шашлыков и для обогрева — освещения места празднования. Ну что я вам хочу сказать. на следующий день мне с трудом удавалось разогнуться, поскольку для того, чтобы от костра света было достаточно туда надо постоянно подбрасывать дрова, которые надо рубить в лесу, в котором после захода солнца стало темно, как сами знаете где и батареи в фонарях приходилось экономить и освещать место пьянства костром, для которого надо рубить дрова. Я повторяюсь, да? Ну вот той ночью у меня таких повторений было очень много. В связи с чем на следующий день возникло два вопроса — «я отдыхал?» Или «где и как сделать, чтобы такого больше не случалось?»
Прежде всего батареи — ясно, что нужны аккумуляторы, но посмотрев на цены современных никель-кадмиевых аккумуляторов моя жаба категорически отказалась их покупать. Тут я вспомнил про УПС-ы — ну знаете, такие бандуры для того, чтобы ваш комп не вырубился в самый неподходящий момент, когда вы заканчиваете проходить сапера 100х100, а добрый сосед уже подключил самопальный сварочный агрегат в розетку и радостно ухмыльнувшись включил его, обесточивая, таким образом пол-дома.
Так вот, в этих бандурах применяются герметичные свинцовые аккумуляторы — их еще называют гелевыми. По стоимости они не сравнимы с Ni-Cd аккумуляторами — первые стоят значительно меньше последних. Поехал я в магазинчик и прикупил себе вполне даже средненький аккумулятор с напряжением 12 вольт и ёмкостью 7,2 ампер-часа.
Рис.1 Фото аккумулятора.
Как видите, он совсем даже небольшого размера, весит в районе 2,5 кило, так что даже если поехать в лес не на машине, а на свои двоих — руки оттягивает не сильно.
Далее все было просто — берем 10-ти ваттную автомобильную лампочку, вешаем её на длинном проводе на дерево и подключаем к сабжу — свет готов. А для подключение магнитолы ваяем простенький стабилизатор на КРЕН8А или её буржуйском аналоге LM7809, прикручиваем провода к клемам в батарейном отсеке — e voila — имеем свет и музыку. Должен вам сказать, что подобная схема уже испытывалась — хватает на всю ночь непрерывной работы и аккумулятор до конца не разряжается.
Но вы же понимаете, что все хорошо до конца не бывает — должна быть где то капелька отходов чловеческого метаболизма, которая должна отравить всю идиллию. В данном случае засада в том, что эти аккумуляторы нельзя заряжать обычными зарядными устройствами для автомобильных аккумуляторов. Обычные кислотно-свинцовые аккумуляторы заряжаются постоянным по величине током, при этом напряжение на клеммах все время растет и когда оно достигает определенной величины — электролит в аккумуляторе закипает, что свидетельствуе об окончании заряда. Давайте себе представим, что будет, когда закипит герметичный аккумулятор. Я так полагаю, что жертв и разрушений вряд ли удасться избежать. Посему эти ящики заряжают по-другому: ток заряда устанавливают равным 0,1С, где С — это ёмкость аккумулятора, причем, зарядный ток ограничивают, поскольку этот товарищ «неудовлетворенный желудочно» и готов сожрать все, что ему дают, напряжение стабилизируют и устанавливают в пределах 14-15 вольт. В процессе заряда напряжение остается практически неизменным, а ток будет уменьшаться от установленного, до 20-30мА в самом конце заряда. То есть, нужно было собрать зарядное устройство.
Возиться ужасно не хотелось, но тут выручили буржуи — ST Microelectronics — у них, оказывается есть почти готовое решение — микросхема L200C. Эта хреновина представляет собой стабилизатор напряжения с программируемым ограничителем выходного тока. Ессс, сказал я. Мяу, казал Кот — он был со мной полностью согласен.
Документация на эту микросхему лежит тут. www.st.com/stonline/products/literature/ds/1318.pdf Схема зарядного устроства на рисунке 2 — это практически типовая схема включения
Особо описывать в общем то и нечего, остановлюсь только на паре моментов. Прежде всего — токозадающие резисторы R2-R6. Их мощность должна быть не меньше указанной на схеме, а лучше больше. Ну если вы, конечно, не фанат дымовых спецэффектов и не тащитесь от вида почерневших резисторов.
Рис 3.1 Макетка с деталюхами
Микросхему, разумеется, надо установить на радиатор, причем, тоже не жадничать — все это хозяйство расчитано на долговременную работу, поэтому, чем легче будет тепловой режим элементов, тем лучше для них, а значит и для вас. Резистором R7 подстраивается выходное напряжение в пределах 14-15 вольт. Диоды лучше брать наши, отечественные в металлических корпусах, тогда их не надо устанавливать на радиаторы. Напряжение на вторичной обмотке трансформатора 15-16 вольт. Лично я никакой платы не делал, не так уж много тут деталей — собрал все на макетке. Что получилось видно на фотке.
Источник
Самодельное зарядное устройство для гелевых аккумуляторов
Досталась мне микросхема L200C и вспомнил как собирал свое первое зарядное устройство для гелевых герметичных аккумуляторов. Схватила настольгия, и решил повторить свою работу
Схема вообще поражает своей простотой и надежностью. Для опытов с проверкой буду использовать тот же АКБ что и раньше, который к слову живет у меня уже лет 6-7. Проработал 3 года у меня в UPS и высох, я восстановил АКБ и остальное время опыты проводил питая автомобильные усилители
Пару слов о АКБ. АКБ выдает 12В 2,16А, масса где-то 3кг. Разница их от автомобильных аккумуляторов в том, что они наполнены гелем и им нельзя закипеть, поэтому для них нужна спец зарядка. Вот такие дела. Ну приступим
Схема зарядного устройство для герметичных гелиевых АКБ
Питается схема от 5 до 40В, но лучше не превышать 30В
Выдает до 32В стабилизированного напряжения
Ток заряда до 2А, но лучше не превышать 1.5А
Перечень компонентов
C1 = 100n любой (керамика, пленка)
C2 = 3300мФ Напряжение берем выше, чем питание
C3 = до 1мФ любой (керамика, пленка)
R1 820 Ом
VD1 зависит от тока заряда, но можно поставить любой. При, например, заряде в 0,5А, диод ставим на 1А
Печатная плата зарядного устройства гелевых аккумуляторов:
Скачать печатную плату
Пароль от архива jhg561bvlkm556
Что бы задать нужное напряжение заряда, надо определить Rv. Определяется он по формуле, исходя из закона Ома, Rv=Uo*R1/(2.77-R1), где Uo – напряжение зарядки. R1 — со схемы. В данном случае 820Ом, 2.77 – это опорное напряжение 4 ноги микры. Для примера что бы напряжение зарядки было 14.4В, это стандартное напряжение для зарядки 12В АКБ, рассчитываем Rv=14.4*0.82/(2.77-0.82)=6.05К, лучше взять резистор на 5.7к+0.47к подстроечный, что бы выставить точное напряжение
Что бы задать максимальный ток зарядки, надо рассчитать резистор Ri на падение напряжения между ножками 5 и 2 на напряжение 0,45В, рассчитываем Ri по формуле Ri=0.45/I, где I — это ток заряда. К примеру ток 0.5 ампер будет при Ri=0.45/0.5=0.9Ом. Мощность резистора P=I^2*Ri. При токе заряда 0.5А мощность резистора равна P=0.22Вт, но лучше взять 0,5Вт
Так же при универсализации зарядки на несколько напряжения, лучше что бы разница напряжений между ногами 1 и 2, была как можно меньше, вы так сэкономите на радиаторах для микросхемы. Если планируете использовать зарядку на 6В и 12В, то лучше взять трансформатор с напряжением 15В с отводом от средней точки на которой 7,5В под нагрузкой. И при переключении с 12В на 6В зарядку обмотки переключаете с 15В на7,5В.
Кстати о трансформаторе. Его мощность зависит от напряжения заряда и тока заряда. Если Вы планируете заряжать 1.5А током при напряжении 14,4В, при обмотке вторички 15В под нагрузкой, то мощность транса нужна от 40Вт 15В 2.5А, при этом зарядка берет 22Вт, а остальные рассеивается в тепло на радиатор.
Напряжение на трансформаторе можно и больше взять, но до 30В. Но при этом и радиатор хороший. При этом помните, что после моста и фильтра C2 напряжение поднимется в 1,4 раза больше, поэтому транс можно взять с напряжением до 21В вторичной
Ну, на этом я с вами прощаюсь. Удачной сборки и удачи в наладке.
Для безопасной, качественной и надежной зарядки любых типов аккумуляторов, рекомендую универсальное зарядное устройство
Что бы не пропустить последние обновления в мастерской, подписывайтесь на обновления в Вконтакте или Одноклассниках, так же можно подписаться на обновления по электронной почте в колонке справа
Не хочется вникать в рутины радиоэлектроники? Рекомендую обратить внимание на предложения наших китайских друзей. За вполне приемлемую цену можно приобрести довольно таки качественные зарядные устройства
Зарядное устройство 12В 1.3А
Простенькое зарядное устройство с светодиодным индикатором зарядки, зеленый батарея заряжается, красный батарея заряжена.
Есть защита от короткого замыкания, есть защита от переполюсовки. Отлично подойдет для зарядки Мото АКБ емкостью до 20А\ч, АКБ 9А\ч зарядит за 7 часов, 20А\ч — за 16 часов. Цена на это зарядное всего 403 рубля,доставка бесплатна
Зарядное устройство для самых разнообразных типов аккумуляторов 12-24В с током до 10А и пиковым током 12А. Умеет заряжать Гелиевые АКБ и СА\СА. Технология зарядки как и у предыдущего в три этапа. Зарядное устройство способно заряжать как в автоматическом режиме, так и в ручном. На панеле есть ЖК индикатор указывающий напряжение, ток заряда и процент зарядки.
Хороший прибор если вам надо заряжать все возможные типы АКБ любых емкостей, аж до 150А\ч
Цена на это чудо 1 625 рублей, доставка бесплатна. На момент написания этих строк количество заказов 23, оценка 4,7 из 5. При заказе не забудьте указать Евровилку
Если какой то товар стал недоступен, пожалуйста напишите в комментарий внизу страницы.
С ув. Admin-чек
2 комментариев для “Самодельное зарядное устройство для гелевых аккумуляторов”
Здравствуйте, у меня есть несколько вопросов:
1.допустим, что, выходное напряжение 12.8 вольт (холостой ход, без нагрузки),
при достижении какого напряжения начнётся ограничение тока?
2.ограничивает-ли ток, эта микросхема, при подключении разряженного аккумулятора?
3.регулируются ли эти пороги ограничений тока?
нужно для зарядки 3-х параллельно соединённых 18650.
Добрый день. Для зарядки трех LI-ion выходное напряжение 12,6В. Первостепенно при разряженном акб идет стабилизация тока, а по мере зарядки схема работает в режиме стабилизации напряжения.
В статье же четко написано как изменить ток зарядки
Что бы задать максимальный ток зарядки, надо рассчитать резистор Ri на падение напряжения между ножками 5 и 2 на напряжение 0,45В, рассчитываем Ri по формуле Ri=0.45/I, где I — это ток заряда. К примеру ток 0.5 ампер будет при Ri=0.45/0.5=0.9Ом. Мощность резистора P=I^2*Ri. При токе заряда 0.5А мощность резистора равна P=0.22Вт, но лучше взять 0,5Вт.
Источник
Зарядное устройство для гелевых аккумуляторов на кр142ЕН12А
Это зарядное устройство предназначено, как гласит заголовок, для зарядки герметичных, геллеевых аккумуляторов. Зарядный ток можно регулировать от десятков миллиампер до одного ампера. При указанных на схеме величинах резисторов R1 и R2, напряжение на выходе данного зарядного устройства можно установить от 1,25… до 14 В. Схема устройства приведена на рисунке 1.
Основными элементами схемы являются микросхемы DA1 и DA2 – КР142ЕН12А. На микросхеме DA2 собран стабилизатор зарядного тока, а на микросхеме DA1 собран стабилизатор напряжения, до которого необходимо зарядить аккумулятор. Со стабилизатором напряжения, я, думаю, вам все понятно, это типовая схема включения микросхемного, трехвыводного стабилизатора напряжения КР142ЕН12А.
Вообще, данная микросхема имеет максимально допустимое входное напряжение 36 В, при этом пределы регулировки выходного напряжения находятся в диапазоне от 1,25 … 37 В. Поэтому входное напряжение +Е зависит от выбранного вами выходного напряжения.Ток нагрузки ограничен техническими условиями на уровне 1,5 А. Рассчитать величину резистора R1 для других выходных напряжений можно по формуле 1.
Где U – напряжение на выходе стабилизатора.
Стабилизатор тока нагрузки, выполненный на микросхеме DA2, по моему мнению, является образцом прекрасного решения регулировки тока стабилизации при своей простоте. Максимальный ток стабилизации зависит от величины резистора R3 и рассчитывается по формуле 2.
Источник
Простое бюджетное зарядное устройство для гелевых кислотных аккумуляторов малой и средней емкости
Минус на минус дает плюс
(математическое правило)
Кислотные аккумуляторы выпускаются в широчайшем ассортименте емкостей и напряжений. Если для автомобильных аккумуляторов емкостью более 50 А·ч известно множество схем зарядных устройств (ЗУ) различного уровня сложности, то ниша гелевых кислотных аккумуляторов 1…12 А·ч не может похвастаться таким же их разнообразием. Аккумуляторы такой емкости широко применяются, например, в фонарях, как тяговые для детских автомобилей и т.п. Применение для их зарядки ЗУ, предназначенных для «старшей» емкостной линейки, экономически нецелесообразно ввиду избыточности зарядного тока и стоимости.
Если рассматривать режим заряда кислотных аккумуляторов стабильным током, то можно заметить, что он подобен аналогичному режиму заряда стабильным током литиевых аккумуляторов. Отличие касается только максимального напряжения, до которого следует заряжать тот и другой типы аккумуляторов: 4,15…4,2 В для литиевых и 13,5…13,8 В для кислотных 12-вольтовых аккумуляторов при резервном их применении или 14,4…15 В — в качестве тяговых.
Практичной могло бы быть ЗУ, построенное на базе обратноходового импульсного инвертора (Flyback), однако ее никак нельзя отнести к «простым и бюджетным», удобным для повторения начинающими из «бросовых» деталей, как это определено в заглавии данной статьи. Учитывая требования электробезопасности, такое ЗУ следует строить на базе сетевого понижающего трансформатора. Однако, исходя из принципов «простоты и бюджетности» и к нему предъявляются определенные специфические требования, главное из которых — доступность и отсутствие необходимости перемотки. С этой точки зрения интерес представляют трансформаторы из серии ТН (Трансформатор Накальный), имеющие по крайней мере две вторичных обмотки по 6,3 В, с которых, соединенных последовательно, после выпрямления и фильтрации можно получить около 15…16 В постоянного напряжения. Однако, такое напряжение, в свою очередь, выдвигает свои требования к схеме стабилизации зарядного тока. Например, известная из даташита на LM317 [1] схема простого стабилизатора тока с ограничением максимального напряжения (Рис. 1) требует входного напряжения не менее, чем на 4,25 В больше (1,25 В на резисторе Rs и 3 В на самом стабилизаторе), чем максимальное напряжение на аккумуляторе в конце его заряда.
Рис 1 Простая схема ЗУ со стабилизацией тока на LM317 [1]
Применение т.н. «Low Dropout» (LDO) стабилизаторов с низким падением напряжения (AMS1085, LT1085, LM2940 и т.п.) К сожалению, картину существенно не меняет: падение напряжения все равно остается в пределах 2…2,25 В, чего 15…16 В выпрямленного напряжения не обеспечивают.
Падение напряжения на стабилизаторе тока, построенном с применением LM317 с токостабилизирующим узлом на резисторном токоизмерительном шунте и биполярном транзисторе [1, 2] (Рис. 2, 3), меньше, чем в вышеописанной схеме, всего на 0,55 В.
Рис 2 Зарядное устройство на LM317 с транзисторным датчиком тока [1]
Рис. 3 Зарядное устройство для литиевых аккумуляторов [2]
Конечно, применение трансформатора с выходным переменным напряжением 15 В, снимает эти ограничения, но «доставабельность» таких трансформаторов сомнительна.
По приведенным выше причинам внимание было обращено на LDO стабилизатор напряжения, выполненный на TL431 с регулирующим биполярным транзистором P-N-P структуры [3] (Рис. 4).
Рис. 4 LDO стабилизатор напряжения на TL431 и регулирующем биполярным транзисторе P-N-P структуры
Похожая по построению схема, но на полевом регулирующем транзисторе с P-каналом, описана в [4], а также независимо рассматривается в [1]. Ее главным достоинством является крайне низкое собственное падение напряжения, составляющее порядка 0,1 В и даже меньше, что позволяет полностью использовать выпрямленное напряжение 12-вольтового трансформатора. К сожалению, она совершенно не защищена от превышения выходным током максимально допустимого для регулирующего транзистора значения (в частности, при коротком замыкании выхода). Введение же в нее токочувствительного узла, аналогичного схемам на Рис. 2, 3, лишает ее свойства LDO (малого падения напряжения).
Схема, показанная на Рис 4, обладает существенно худшими параметрами. Так, собственное падение напряжения на ней при указанных на рисунке номиналах деталей, составляет 0,34…0,4 В, на резисторе R3 падает не менее 0,25 Вт мощности, а нагрев VT1 током, проходящим через R3, ведет к нестабильности (снижению) выходного напряжения. На первый взгляд, в ней также нет никаких токочувствительных узлов и она тоже должна была бы страдать от чрезмерных выходных токов. Короче, всё казалось бы, плохо. Однако, китайский иероглиф, обозначающий «кризис», обозначает также «возможность». Минусы, присущие данной схеме, оказываются жирными плюсами, если ее применить в качестве ЗУ.
Рассмотрим, за счет чего это достигается.
Биполярный транзистор является токовым п/проводниковым прибором. Т.е., ток коллектора пропорционален току базы, умноженному на коэффициент усиления. Таким образом, выходной ток никогда не превысит значение, заданное током, протекающим через резистор R3. Естественно, коэффициент усиления зависит от коллекторного тока, напряжения коллектор-эмиттер, температуры кристалла транзистора и поэтому может изменяться в определенных пределах. Для других применений это было бы критично, но для ЗУ совершенно несущественно. Главное, чтобы при наихудших условиях зарядный ток не превышал значения, допустимого для данного типа аккумуляторов. Для гелевых кислотных это обычно порядка 0,3 С (где «С» — емкость в А·ч), Рис. 5.
Рис. 5 Параметры режимов заряда гелевого кислотного аккумулятора емкостью 5 А·ч
Далее. Пока в процессе заряда выходное напряжение меньше установленного резистором R5 максимального (14,4…15 В), напряжение на регулирующем выводе шунтового регулятора TL431 меньше референтных 2,5 В и он полностью заперт. Соответственно, полностью заперт и не участвует в работе транзистор VT1. Выходной ток определяется только компонентами R3 и VT2. Светодиод HL1 не светится.
По достижении напряжения на клеммах заряжаемого аккумулятора выставленного на холостом ходу 14,4…15 В напряжение на регулирующем выводе шунтового регулятора TL431 достигает референтных 2,5 В, он и, соответственно, транзистор VT1 включаются в работу. VT 1 начинает приоткрываться, шунтируя базо-эмиттерный переход VT2 и тем самым ограничивая дальнейший рост выходного напряжения. Светодиод HL1 начинает светиться за счет тока, протекающего через шунтовый регулятор DA1 свидетельствуя об окончании зарядки. При этом на аккумулятор поступает только ток, равный току саморазряда. В таком состоянии он может оставаться подключенным к ЗУ сколь угодно долгое время.
Схемы, показанные на Рис. 2 (полная схема показана на Рис. 6) и Рис. 4, были изготовлены и апробированы с питанием от трансформатора ТС10-1, обеспечивающем на выходе переменное напряжение 12,8 В при токе до 0,7 А. Печатные платы показаны на Рис. 7 и 8, соответственно.
Рис. 6 ЗУ со стабилизацией тока на LM317/MC33269aj и транзисторе
Рис. 7 Печатная плата ЗУ со стабилизацией тока на MC33269aj и транзисторе
Рис. 8 Печатная плата ЗУ со стабилизацией тока LDO стабилизаторе напряжения (по Рис. 4)
При апробации подтвердились недостатки схемы на регулируемых 3-выводных стабилизаторах по Рис. 6, описанные выше. Схемы, настроенные на ток 0,7 А, не смогли выдать более 0,42 А с использованием LM317 и 0,5А с использованием MC33269. Вторая, кстати, не выдержала эксплуатации и пробилась накоротко через несколько часов работы, из-за чего конечное напряжение на заряжаемом аккумуляторе достигло 15,7 В(. ). К счастью, на нем сработал предохранительный клапан.
Cхема по Рис. 4, обеспечила заряд второго такого же частично заряженного аккумулятора током 0,65 А. Исходное напряжение на нем составляло 12,3 В. Напряжение 14,4 В было достигнуто в течение 3-х часов. При этом регулирующий транзистор VT2, НЕ установленный на радиатор, оставался практически холодным. Радиатор на плату поставлен окончательно только потому, что он был уже вырезан (Рис. 9). Не выбрасывать же?!
Рис. 9 ЗУ со стабилизацией тока LDO стабилизаторе напряжения,
частично собранный, в корпусе сетевого адаптера
Чертежи печатной платы для обоих апробированных вариантов схем, приаттачены, однако, должен заметить, что они годятся только для данного корпуса. Для другого их придется переразводить по-новому.
Источник