- Зарядка аккумуляторов с помощью ЛБП
- Рекомендованные сообщения
- Присоединяйтесь к обсуждению
- Сообщения
- Похожие публикации
- Можно ли (как) зарядить аккумулятор при помощи лабораторного БП?
- dims12
- titanik
- dims12
- Дима_89
- dims12
- Дима_89
- titanik
- igor2013
- Svarog
- dims12
- Svarog
- titanik
- Caravanscheg
- Евген.
- dims12
- Fair_ustal
- Svarog
- 10 простых схем зарядок литий-ионных аккумуляторов и как правильно заряжать
- Какими бывают литиевые аккумуляторы
- Как правильно заряжать литий-ионные аккумуляторы
- Что такое плата защиты?
- Схемы зарядок li-ion аккумуляторов
- LM317
- MAX1555 или MAX1551
- LP2951
- MCP73831
- LTC4054 (STC4054)
- TP4056
- LTC1734
- TL431 + транзистор
- MCP73812
- NCP1835
- Можно ли заряжать литий-ионный аккумулятор без контроллера?
- Зарядка при помощи лабораторного блока питания
- Как заряжать литиевые батарейки?
- Где покупать микросхемы?
Зарядка аккумуляторов с помощью ЛБП
Рекомендованные сообщения
Присоединяйтесь к обсуждению
Вы можете опубликовать сообщение сейчас, а зарегистрироваться позже. Если у вас есть аккаунт, войдите в него для написания от своего имени.
Примечание: вашему сообщению потребуется утверждение модератора, прежде чем оно станет доступным.
Сообщения
Похожие публикации
Малогабаритное универсальное зарядное устройство 1,25-21В 0,1-1А
Назначение: зарядка любых типов аккумуляторов в указанном диапазоне.
Например им можно заряжать все типы аккумуляторов шуруповертов.
Зарядка начинается при нажатии кнопки «Пуск» Загорается индикатор. По окончании зарядки блок реле отключает автоматически аккумулятор от зарядного устройства. При этом гаснет индикатор.
Напряжение зарядки выставляется резистором R3 на DC-DC понижающем преобразователе (см. схему зарядного устройства). Максимальные ток зарядки выставляется резистором R1. Резистором R2 устанавлявается порог отключения устройства (окончание зарядки).
Модуль питания 24в 1а — https://www.ebay.com/itm/AC-DC-5-12-15-24V-Switching-Power-Supply-Module-
Regulator-Voltage-Switch-Board/142915009965?hash=item214665fdad:m:meLGPk4Nxbtli7I9ix48WuA:rk:1:pf:0
DC-DC понижающий преобразователь LM2596 — https://www.ebay.com/itm/LM2596-DC-DC-Step-down-Adjustable-CC-CV-
Power-Supply-Module-Converter-LED-driver/191673918658?hash=item2ca0a7e4c2:g:4H4AAOSwMmBVo4rQ:rk:5:pf:0&LH_BIN=1
Модуль реле с гальванической развязкой — https://www.ebay.com/itm/1CH-2CH-4CH-Relay-Module-Board-With-Optocoupler-
H-L-Level-Triger-5-9-12-24V/123484927241?hash=item1cc0467509:m:mf3zMDau1S1Rz8N82eGYIug:rk:31:pf:0&LH_BIN=1
Если нужно зарядное устройство 1,5 — 21В 0,1-5А, то нужно применить эти блоки взамен выше указанных.
Модуль питания 24в 5а — https://www.ebay.com/itm/AC-100-240V-to-DC-24V-4A-6A-switching-power-supply-
module-AC-DC-S8T4/302752973085?epid=2269913596&hash=item467d7bc11d:g:oxMAAOSwirFbDNjS:rk:1:pf:0
DC-DC понижающий преобразователь — https://www.ebay.com/itm/XL4015-5A-DC-DC-Step-Down-Buck-Converter-Module-Power-Supply-LED-Lithium-Charger/311820844395?hash=item4899f87d6b:m:m3-_IdHuxuGzJuNCr2mWMIQ
Схема зарядного устройства.pdf
Добрый день.
Нужно сделать одну вещицу со светодиодной лентой.
Если абстрагироваться, то идея такая: светится она должна либо от сети (блок питания) либо от аккумычей. Нужен какой то 3-х позиционный переключатель — Аккумы, Выключено, Сеть.
Не совсем понимаю какой переключатель нужен, ведь если ставить в разрыв с плюсом (прямо перед светодиодной лентой), то куда девать минус то . он будет статичен или на сеть или аккум его припаивать, и так работать же не будет.
Или что я не понимаю?
Вообщем набор имеющегося нарисовал на картинке)
Ещё так же вопрос по расчет толщины проводов, их нужно расчитывать по мощности же ? а не по силе тока?
Ведь 3А на 220V и 3А на 12V, это ж разные 3А? Или я что-то не понимаю?
Извините за глупые вопросы, заранее спасибо за ответ.
Итак имеется три литий ионных аккумулятора с напряжением 3.7 вольт и ёмкостью 800mAh с платой защиты, от переразряда, от перезаряда и от КЗ, могу ли я соединить их параллельно (чтобы получить большую ёмкость и больший ток) и так чтобы ничего не взорвалось и чтобы аккумуляторы быстро не испортились. И ещё ёмкость полученной батареи будет 2400 mAh, могу ли я полученную батарею нагружать током в 2А? Ничего с аккумуляторами при этом не случиться? Фотки аккумов будут ниже.
Источник
Можно ли (как) зарядить аккумулятор при помощи лабораторного БП?
dims12
Новичок
У меня есть блок питания, который может выдавать напряжение до 30 вольт и ток до 5 ампер. Так же он показывает на экранчике текущее напряжение и ток.
Можно ли с его помощью зарядить автомобильный аккумулятор и как?
Просто подсоединить плюс к плюсу и минус к минусу и подать 12 вольт?
А как узнать, что аккумулятор зарядился? По току? Он будет возрастать или падать по мере зарядки?
titanik
dims12
Новичок
Дима_89
dims12
Новичок
То есть, авто ЗУ поднимает напряжение, чтобы ток не падал.
Ну и ладно, если я не буду этого делать или буду делать редко, то он просто медленнее заряжаться будет. Не так?
Почему он должен закипеть? Превышения по току не будет, так как БП за этим следит.
Дима_89
Кипятить АКБ можно обоими способами, АКБ подзарядится и так и так. Только с БП вручную постепенно напряжение придется повышать, когда ток упадет.
Добавлено через 2 минуты
АКБ начинает кипеть при напряжениях более 14В, особенно если оно подается постоянно. Есть ЗУ, которые подают напругу короткими импульсами, там АКБ не успевает закипеть.
titanik
igor2013
Постоялец
Svarog
Почётный Тигуановод
У меня есть блок питания, который может выдавать напряжение до 30 вольт и ток до 5 ампер. Так же он показывает на экранчике текущее напряжение и ток.
Можно ли с его помощью зарядить автомобильный аккумулятор и как?
Просто подсоединить плюс к плюсу и минус к минусу и подать 12 вольт?
А как узнать, что аккумулятор зарядился? По току? Он будет возрастать или падать по мере зарядки?
Сделать это можно, только хлопотно. Нужно ручками выставлять напряжение с точностью до 0.2В, вряд ли лабораторный блок питания это сможет. Ну или грубо выставить 14В и вкачать в АКБ столько, сколько он съест, а потом выставить 15В и дождаться активного газообразования.
Признаком окончания зарядки свинцово-кислотного аккумулятора служат:
1. Начало активного газообразования.
2. Когда при напряжении 14.8В (при +20 градусах) ток, потребляемый аккумулятором, падает до уровня близкого к нулю и держится таковым минимум два часа. Впрочем, в зависимости от особенностей технологии аккумулятора это значение может несколько изменяться.
dims12
Новичок
Svarog, нахрена такая точность? Там что, космические технологии?
Добавлено через 4 минуты
Видео от Чипа и Дипа вот: https://youtu.be/yThS-UrRu2E
Там они ставят ток 0,38 А, а не 3-4 ампера.
Svarog
Почётный Тигуановод
Участник
titanik
Caravanscheg
Завсегдатай
У меня есть блок питания, который может выдавать напряжение до 30 вольт и ток до 5 ампер. Так же он показывает на экранчике текущее напряжение и ток.
Можно ли с его помощью зарядить автомобильный аккумулятор и как?
Просто подсоединить плюс к плюсу и минус к минусу и подать 12 вольт?
А как узнать, что аккумулятор зарядился? По току? Он будет возрастать или падать по мере зарядки?
Обычно такие источники поддерживают и режим ограничения тока. Фото источника можно?
Если режим ограничения тока присутствует, то не только «можно», а даже очень удобно. Выставляешь ограничение тока на маленький уровень (регулятор влево почти до упора), затем выставляешь напряжение 14.4-14.6В, подключаешь акк, и увеличиваешь ток до 4-5А. Вначале ток будет постоянным, потом начнет падать. Сутки отстоит акк на зарядке — можно снимать. Перезарядить, вскипятить таким способом невозможно.
Евген.
Интересно, на токе 0,38 А за какой промежуток времени можно зарядить АКБ? Неделя? Год? Видео скорее всего снимал тот, кто хорошо говорит на камеру, а не тот, кто в техническом смысле хоть что то понимает.
Добавлено через 8 минут
dims12
Новичок
С какой стати? Автомобильный генератор выдаёт 13.8 (если верить ролику Чип и Дип) так что я поставил бы не больше такого. И вообще, начал бы с меньшего.
Что значит точно? Можно поставить сперва напряжение 12.8, а затем в несколько ступеней повышать напряжение до 13.8, как показано в ролике, сохраняя первоначальный ток?
Добавлено через 1 минуту
Если уж на то пошло, то можно вызвать автосервис и вообще не думать ни о чём.
Добавлено через 42 минуты
Источник оказался в точности такой, как на видео чипа и дипа (ссылку я приводил), только ток у него не 3А, а 5А.
Добавлено через 4 минуты
Я так думаю, надо ёмкость в амер-часах поделить на ток.
Например, если аккумулятор имеет ёмкость 60 ампер часов, то заряжаться полностью на таком токе он будет 60/0.38/24 = 6.5 дней, то есть, неделю.
Fair_ustal
Участник
Svarog
Почётный Тигуановод
Только не 13.8В, а 14.8В — вот оптимальное целевое напряжение для малосурьмянистых свинцово-кислотных автомобильных АКБ при температуре электролита +20 градусов. При -25, кстати, будет около 15.2В. При таком целевом напряжении в теории достигается уровень заряженности АКБ около 90%.
А 13.8В (кстати, на самом деле 14.2В) — это оптимальное (для АКБ) устоявшееся напряжение в бортовой сети при такой же температуре электролита в +20 градусов. При +50, что вполне возможно летом в моторном отсеке, будет как раз 13.8В, и продвинутые системы управления напряжением генератора обладают отрицательной ТКН.
Отсюда вывод — без использования внешнего ЗУ автомобильный АКБ никогда не заряжается более чем на 75-80%, т.к. физика процессов зарядки постоянным напряжением в бортовой сети этого не допускает.
Полностью малосурьмянистые АКБ заряжаются зарядниками с целевым напряжением более 16В малыми токами с жестким контролем газообразования. Обычно с этим не связываются, считая что при 14.8В газообразование еще незначительно, а степень заряженности уже приличная.
Источник
10 простых схем зарядок литий-ионных аккумуляторов и как правильно заряжать
Оценка характеристик того или иного зарядного устройства затруднительна без понимания того, как собственно должен протекать образцовый заряд li-ion аккумулятора. Поэтому прежде чем перейти непосредственно к схемам, давайте немного вспомним теорию.
Какими бывают литиевые аккумуляторы
В зависимости от того, из какого материала изготовлен положительный электрод литиевого аккумулятора, существует их несколько разновидностей:
- с катодом из кобальтата лития;
- с катодом на основе литированного фосфата железа;
- на основе никель-кобальт-алюминия;
- на основе никель-кобальт-марганца.
У всех этих аккумуляторов имеются свои особенности, но так как для широкого потребителя эти нюансы не имеют принципиального значения, в этой статье они рассматриваться не будут.
Также все li-ion аккумуляторы производят в различных типоразмерах и форм-факторах. Они могут быть как в корпусном исполнении (например, популярные сегодня 18650) так и в ламинированном или призматическом исполнении (гель-полимерные аккумуляторы). Последние представляют собой герметично запаянные пакеты из особой пленки, в которых находятся электроды и электродная масса.
Наиболее распространенные типоразмеры li-ion аккумуляторов приведены в таблице ниже (все они имеют номинальное напряжение 3.7 вольта):
Обозначение | Типоразмер | Схожий типоразмер |
---|---|---|
XXYY0, где XX – указание диаметра в мм, YY – значение длины в мм, 0 – отражает исполнение в виде цилиндра | 10180 | 2/5 AAA |
10220 | 1/2 AAA (Ø соответствует ААА, но на половину длины) | |
10280 | ||
10430 | ААА | |
10440 | ААА | |
14250 | 1/2 AA | |
14270 | Ø АА, длина CR2 | |
14430 | Ø 14 мм (как у АА), но длина меньше | |
14500 | АА | |
14670 | ||
15266, 15270 | CR2 | |
16340 | CR123 | |
17500 | 150S/300S | |
17670 | 2xCR123 (или 168S/600S) | |
18350 | ||
18490 | ||
18500 | 2xCR123 (или 150A/300P) | |
18650 | 2xCR123 (или 168A/600P) | |
18700 | ||
22650 | ||
25500 | ||
26500 | С | |
26650 | ||
32650 | ||
33600 | D | |
42120 |
Внутренние электрохимические процессы протекают одинаково и не зависят от форм-фактора и исполнения АКБ, поэтому все, сказанное ниже, в равной степени относится ко всем литиевым аккумуляторам.
Как правильно заряжать литий-ионные аккумуляторы
Наиболее правильным способом заряда литиевых аккумуляторов является заряд в два этапа. Именно этот способ использует компания Sony во всех своих зарядниках. Несмотря на более сложный контроллер заряда, это обеспечивает более полный заряд li-ion аккумуляторов, не снижая срока их службы.
Итак, рассмотрим оба этапа заряда подробнее.
1. На первом этапе должен обеспечиваться постоянный ток заряда. Величина тока составляет 0.2-0.5С. Для ускоренного заряда допускается увеличение тока до 0.5-1.0С (где С — это емкость аккумулятора).
Например, для аккумулятора емкостью 3000 мА/ч, номинальный ток заряда на первом этапе равен 600-1500 мА, а ток ускоренного заряда может лежать в пределах 1.5-3А.
Для обеспечения постоянного зарядного тока заданной величины, схема зарядного устройства (ЗУ) должна уметь поднимать напряжение на клеммах аккумулятора. По сути, на первом этапе ЗУ работает как классический стабилизатор тока.
В момент, когда напряжение на аккумуляторе поднимется до значения 4.2 вольта, аккумулятор наберет приблизительно 70-80% своей емкости (конкретное значение емкости будет зависит от тока заряда: при ускоренном заряде будет чуть меньше, при номинальном — чуть больше). Этот момент является окончанием первого этапа заряда и служит сигналом для перехода ко второму (и последнему) этапу.
2. Второй этап заряда — это заряд аккумулятора постоянным напряжением, но постепенно снижающимся (падающим) током.
На этом этапе ЗУ поддерживает на аккумуляторе напряжение 4.15-4.25 вольта и контролирует значение тока.
По мере набора емкости, зарядный ток будет снижаться. Как только его значение уменьшится до 0.05-0.01С, процесс заряда считается оконченным.
За время второго этапа заряда, аккумулятор успевает набрать еще примерно 0.1-0.15 своей емкости. Общий заряд аккумулятора таким образом достигает 90-95%, что является отличным показателем.
Мы рассмотрели два основных этапа заряда. Однако, освещение вопроса зарядки литиевых аккумуляторов было бы неполным, если бы не был упомянут еще один этап заряда — т.н. предзаряд.
Предварительный этап заряда (предзаряд) — этот этап используется только для глубоко разряженных аккумуляторов (ниже 2.5 В) для вывода их на нормальный эксплуатационный режим.
На этом этапе заряд обеспечивается постоянным током пониженной величины до тех пор, пока напряжение на аккумуляторе не достигнет значения 2.8 В.
Предварительный этап необходим для предотвращения вспучивания и разгерметизации (или даже взрыва с возгоранием) поврежденных аккумуляторов, имеющих, например, внутреннее короткое замыкание между электродами. Если через такой аккумулятор сразу пропустить большой ток заряда, это неминуемо приведет к его разогреву, а дальше как повезет.
Еще одна польза предзаряда — это предварительный прогрев аккумулятора, что актуально при заряде при низких температурах окружающей среды (в неотапливаемом помещении в холодное время года).
Интеллектуальная зарядка должна уметь контролировать напряжение на аккумуляторе во время предварительного этапа заряда и, в случае, если напряжение долгое время не поднимается, делать вывод о неисправности аккумулятора.
Все этапы заряда литий-ионного аккумулятора (включая этап предзаряда) схематично изображены на этом графике:
Резюмирую вышесказанное, обозначим основные тезисы:
1. Каким током заряжать li-ion аккумулятор (например, 18650 или любой другой)?
Ток будет зависеть от того, насколько быстро вы хотели бы его зарядить и может лежать в пределах от 0.2С до 1С.
Например, для аккумулятора типоразмера 18650 емкостью 3400 мА/ч, минимальный ток заряда составляет 680 мА, а максимальный — 3400 мА.
2. Сколько времени нужно заряжать, например, те же аккумуляторные батарейки 18650?
Время заряда напрямую зависит от тока заряда и рассчитывается по формуле:
Например, время заряда нашего аккумулятора емкостью 3400 мА/ч током в 1А составит около 3.5 часов.
3. Как правильно зарядить литий-полимерный аккумулятор?
Любые литиевые аккумуляторы заряжаются одинаково. Не важно, литий-полимерный он или литий-ионный. Для нас, потребителей, никакой разницы нет.
Что такое плата защиты?
Плата защиты (или PCB — power control board) предназначена для защиты от короткого замыкания, перезаряда и переразряда литиевой батареи. Как правило в модули защиты также встроена и защита от перегрева.
В целях соблюдения техники безопасности запрещено использование литиевых аккумуляторов в бытовых приборах, если в них не встроена плата защиты. Поэтому во всех аккумуляторах от сотовых телефонов всегда есть PCB-плата. Выходные клеммы АКБ размещены прямо на плате:
В этих платах используется шестиногий контроллер заряда на специализированной микрухе DW01 (JW01, JW11, K091, G2J, G3J, S8210, S8261, NE57600 и пр. аналоги). Задачей этого контроллера является отключение батареи от нагрузки при полном разряде батареи и отключение аккумулятора от зарядки при достижении 4,25В.
Вот, например, схема платы защиты от аккумулятора BP-6M, которыми снабжались старые нокиевские телефоны:
Если говорить об 18650, то они могут выпускаться как с платой защиты так и без нее. Модуль защиты располагается в районе минусовой клеммы аккумулятора.
Плата увеличивает длину аккумулятора на 2-3 мм.
Аккумуляторы без PCB-модуля обычно входят в состав батарей, комплектуемых собственными схемами защиты.
Любой аккумулятор с защитой легко превращается в аккумулятор без защиты, достаточно просто распотрошить его.
На сегодняшний день максимальная емкость аккумулятора 18650 составляет 3400 мА/ч. Аккумуляторы с защитой обязательно имеют соответствующее обозначение на корпусе («Protected»).
Не стоит путать PCB-плату с PCM-модулем (PCM — power charge module). Если первые служат только целям защиты аккумулятора, то вторые предназначены для управления процессом заряда — ограничивают ток заряда на заданном уровне, контролируют температуру и, вообще, обеспечивают весь процесс. PCM-плата — это и есть то, что мы называем контроллером заряда.
Надеюсь, теперь не осталось вопросов, как зарядить аккумулятор 18650 или любой другой литиевый? Тогда переходим к небольшой подборке готовых схемотехнических решений зарядных устройств (тех самых контроллеров заряда).
Схемы зарядок li-ion аккумуляторов
Все схемы подходят для зарядки любого литиевого аккумулятора, остается только определиться с зарядным током и элементной базой.
LM317
Схема простого зарядного устройства на основе микросхемы LM317 с индикатором заряда:
Схема простейшая, вся настройка сводится к установке выходного напряжения 4.2 вольта с помощью подстроечного резистора R8 (без подключенного аккумулятора!) и установке тока заряда путем подбора резисторов R4, R6. Мощность резистора R1 — не менее 1 Ватт.
Как только погаснет светодиод, процесс заряда можно считать оконченным (зарядный ток до нуля никогда не уменьшится). Не рекомендуется долго держать аккумулятор в этой зарядке после того, как он полностью зарядится.
Микросхема lm317 широко применяется в различных стабилизаторах напряжения и тока (в зависимости от схемы включения). Продается на каждом углу и стоит вообще копейки (можно взять 10 шт. всего за 55 рублей).
LM317 бывает в разных корпусах:
Назначение выводов (цоколевка):
Аналогами микросхемы LM317 являются: GL317, SG31, SG317, UC317T, ECG1900, LM31MDT, SP900, КР142ЕН12, КР1157ЕН1 (последние два — отечественного производства).
Зарядный ток можно увеличить до 3А, если вместо LM317 взять LM350. Она, правда, подороже будет — 11 руб/шт.
Печатная плата и схема в сборе приведены ниже:
Старый советский транзистор КТ361 можно заменить на аналогичный p-n-p транзистор (например, КТ3107, КТ3108 или буржуйские 2N5086, 2SA733, BC308A). Его можно вообще убрать, если индикатор заряда не нужен.
MAX1555 или MAX1551
MAX1551/MAX1555 — специализированные зарядные устройства для Li+ аккумуляторов, способные работать от USB или от отдельного адаптера питания (например, зарядника от телефона).
Единственное отличие этих микросхем — МАХ1555 выдает сигнал для индикатора процесса заряда, а МАХ1551 — сигнал того, что питание включено. Т.е. 1555 в большинстве случаев все-таки предпочтительнее, поэтому 1551 сейчас уже трудно найти в продаже.
Подробное описание этих микросхем от производителя — datasheet.
Максимальное входное напряжение от DC-адаптера — 7 В, при питании от USB — 6 В. При снижении напряжения питания до 3.52 В, микросхема отключается и заряд прекращается.
Микросхема сама детектирует на каком входе присутствует напряжение питания и подключается к нему. Если питание идет по ЮСБ-шине, то максимальный ток заряда ограничивается 100 мА — это позволяет втыкать зарядник в USB-порт любого компьютера, не опасаясь сжечь южный мост.
При питании от отдельного блока питания, типовое значение зарядного тока составляет 280 мА.
В микросхемы встроена защита от перегрева. Но даже в этом случае схема продолжает работать, уменьшая ток заряда на 17 мА на каждый градус выше 110°C.
Имеется функция предварительного заряда (см. выше): до тех пор пока напряжение на аккумуляторе находится ниже 3В, микросхема ограничивает ток заряда на уровне 40 мА.
Микросхема имеет 5 выводов. Вот типовая схема включения:
Если есть гарантия, что на выходе вашего адаптера напряжение ни при каких обстоятельствах не сможет превысить 7 вольт, то можно обойтись без стабилизатора 7805.
Вариант зарядки от USB можно собрать, например, на такой печатной плате.
Микросхемы не нуждается ни во внешних диодах, ни во внешних транзисторах. Вообще, конечно, шикарные микрухи! Только они маленькие слишком, паять неудобно. И еще стоят дорого (посмотреть на цены и афигеть).
LP2951
Стабилизатор LP2951 производится фирмой National Semiconductors (даташит). Он обеспечивает реализацию встроенной функции ограничения тока и позволяет формировать на выходе схемы стабильный уровень напряжения заряда литий-ионного аккумулятора.
Величина напряжения заряда составляет 4,08 — 4,26 вольта и выставляется резистором R3 при отключенном аккумуляторе. Напряжение держится очень точно.
Ток заряда составляет 150 — 300мА, это значение ограничено внутренними цепями микросхемы LP2951 (зависит от производителя).
Диод применять с небольшим обратным током. Например, он может быть любым из серии 1N400X, какой удастся приобрести. Диод используется, как блокировочный, для предотвращения обратного тока от аккумулятора в микросхему LP2951 при отключении входного напряжения.
Данная зарядка выдает довольно низкий зарядный ток, так что какой-нибудь аккумулятор 18650 может заряжаться всю ночь.
Микросхему можно купить как в DIP-корпусе, так и в корпусе SOIC (стоимость около 10 рублей за штучку).
MCP73831
Микросхема позволяет создавать правильные зарядные устройства, к тому же она дешевле, чем раскрученная MAX1555.
Типовая схема включения взята из даташита:
Важным достоинством схемы является отсутствие низкоомных мощных резисторов, ограничивающих ток заряда. Здесь ток задается резистором, подключенным к 5-ому выводу микросхемы. Его сопротивление должно лежать в диапазоне 2-10 кОм.
Зарядка в сборе выглядит так:
Микросхема в процессе работы неплохо так нагревается, но это ей вроде не мешает. Свою функцию выполняет.
Вот еще один вариант печатной платы с smd светодиодом и разъемом микро-USB:
(скачать эту плату в формате *.lay)
Пожалуй, это одна из самых простейших зарядок для литий-ионных аккумуляторов 18650, которую можно сделать своими руками. Подходит и для li-pol батарей.
Если тока в 500 мА недостаточно, что рекомендую обратить внимание на схему с TP4056.
LTC4054 (STC4054)
Очень простая схема, отличный вариант! Позволяет заряжать током до 800 мА (см. описание микросхемы). Правда, она имеет свойство сильно нагреваться, но в этом случае встроенная защита от перегрева снижает ток.
Схему можно существенно упростить, выкинув один или даже оба светодиодов с транзистором. Тогда она будет выглядеть вот так (согласитесь, проще некуда: пара резисторов и один кондер):
Один из вариантов печатной платы доступен по этой ссылке. Плата рассчитана под элементы типоразмера 0805.
Ток заряда (в амперах) рассчитывается по формуле I=1000/R. Сразу большой ток выставлять не стоит, сначала посмотрите, насколько сильно будет греться микросхема. Я для своих целей взял резистор на 2.7 кОм, при этом ток заряда получился около 360 мА.
Радиатор к этой микросхеме вряд ли получится приспособить, да и не факт, что он будет эффективен из-за высокого теплового сопротивления перехода кристалл-корпус. Производитель рекомендует делать теплоотвод «через выводы» — делать как можно более толстые дорожки и оставлять фольгу под корпусом микросхемы. И вообще, чем больше будет оставлено «земляной» фольги, тем лучше.
Кстати говоря, бОльшая часть тепла отводится через 3-ю ногу, так что можно сделать эту дорожку очень широкой и толстой (залить ее избыточным количеством припоя).
Корпус микросхемы LTC4054 может иметь маркировку LTH7 или LTADY.
Микросхема вышла очень удачной, поэтому имеет кучу аналогов: STC4054, MCP73831, TB4054, QX4054, TP4054, SGM4054, ACE4054, LP4054, U4054, BL4054, WPM4054, IT4504, Y1880, PT6102, PT6181, VS6102, HX6001, LC6000, LN5060, CX9058, EC49016, CYT5026, Q7051. Прежде, чем использовать какой-либо из аналогов, сверяйтесь по даташитам.
TP4056
Микросхема выполнена в корпусе SOP-8 (см. datasheet), имеет на брюхе металлический теплосьемник не соединенный с контактами, что позволяет эффективнее отводить тепло. Позволяет заряжать аккумулятор током до 1А (ток зависит от токозадающего резистора).
Схема подключения требует самый минимум навесных элементов:
Схема реализует классический процесс заряда — сначала заряд постоянным током, затем постоянным напряжением и падающим током. Все по-научному. Если разобрать зарядку по шагам, то можно выделить несколько этапов:
- Контроль напряжения подключенного аккумулятора (это происходит постоянно).
- Этап предзаряда (если аккумулятор разряжен ниже 2.9 В). Заряд током 1/10 от запрограммированного резистором Rprog (100мА при Rprog = 1.2 кОм) до уровня 2.9 В.
- Зарядка максимальным током постоянной величины (1000мА при Rprog = 1.2 кОм);
- При достижении на батарее 4.2 В, напряжение на батарее фиксируется на этому уровне. Начинается плавное снижение зарядного тока.
- При достижении тока 1/10 от запрограммированного резистором Rprog (100мА при Rprog = 1.2кОм) зарядное устройство отключается.
- После окончания зарядки контроллер продолжает мониторинг напряжения аккумулятора (см. п.1). Ток, потребляемый схемой мониторинга 2-3 мкА. После падения напряжения до 4.0В, зарядка включается снова. И так по кругу.
Ток заряда (в амперах) рассчитывается по формуле I=1200/Rprog. Допустимый максимум — 1000 мА.
Реальный тест зарядки с аккумулятором 18650 на 3400 мА/ч показан на графике:
Достоинство микросхемы в том, что ток заряда задается всего лишь одним резистором. Не требуются мощные низкоомные резисторы. Плюс имеется индикатор процесса заряда, а также индикация окончания зарядки. При неподключенном аккумуляторе, индикатор моргает с периодичностью раз в несколько секунд.
Напряжение питания схемы должно лежать в пределах 4.5. 8 вольт. Чем ближе к 4.5В — тем лучше (так чип меньше греется).
Первая нога используется для подключения датчика температуры, встроенного в литий-ионную батарею (обычно это средний вывод аккумулятора сотового телефона). Если на выводе напряжение будет ниже 45% или выше 80% от напряжения питания, то зарядка приостанавливается. Если контроль температуры вам не нужен, просто посадите эту ногу на землю.
Печатка простая, делается за час на коленке. Если время терпит, можно заказать готовые модули. Некоторые производители готовых модулей добавляют защиту от перегрузки по току и переразряда (вот тут, например, можно выбрать какая плата вам нужна — с защитой или без, и с каким разъемом).
Так же можно найти готовые платы с выведенным контактом под температурный датчик. Или даже модуль зарядки с несколькими запараллеленными микросхемами TP4056 для увеличения зарядного тока и с защитой от переполюсовки (пример).
LTC1734
Тоже очень простая схема. Ток заряда задается резистором Rprog (например, если поставить резистор на 3 кОм, ток будет равен 500 мА).
Микросхемы обычно имеют маркировку на корпусе: LTRG (их можно часто встретить в старых телефонах от самсунгов).
Транзистор подойдет вообще любой p-n-p, главное, чтобы он был рассчитан на заданный ток зарядки.
Индикатора заряда на указанной схеме нет, но в даташите на LTC1734 сказано, что вывод «4» (Prog) имеет две функции — установку тока и контроль окончания заряда батареи. Для примера приведена схема с контролем окончания заряда при помощи компаратора LT1716.
Компаратор LT1716 в данном случае можно заменить дешевым LM358.
TL431 + транзистор
Наверное, сложно придумать схему из более доступных компонентов. Здесь самое сложное — это найти источник опорного напряжение TL431. Но они настолько распространены, что встречаются практически повсюду (редко какой источник питания обходится без этой микросхемы).
Ну а транзистор TIP41 можно заменить любым другим с подходящим током коллектора. Подойдут даже старые советские КТ819, КТ805 (или менее мощные КТ815, КТ817).
Настройка схемы сводится к установке выходного напряжения (без аккумулятора. ) с помощью подстроечного резистора на уровне 4.2 вольта. Резистор R1 задает максимальное значение зарядного тока.
Данная схема полноценно реализует двухэтапный процесс заряда литиевых аккумуляторов — сначала зарядка постоянным током, затем переход к фазе стабилизации напряжения и плавное снижение тока практически до нуля. Единственный недостаток — плохая повторяемость схемы (капризна в настройке и требовательна к используемым компонентам).
MCP73812
Есть еще одна незаслуженно обделенная вниманием микросхема от компании Microchip — MCP73812 (см. даташит). На ее базе получается очень бюджетный вариант зарядки (и недорогой!). Весь обвес — всего один резистор!
Кстати, микросхема выполнена в удобном для пайки корпусе — SOT23-5.
Единственный минус — сильно греется и нет индикации заряда. Еще она как-то не очень надежно работает, если у вас маломощный источник питания (который дает просадку напряжения).
В общем, если для вас индикация заряда не важна, и ток в 500 мА вас устраивает, то МСР73812 — очень неплохой вариант.
NCP1835
Предлагается полностью интегрированное решение — NCP1835B, обеспечивающее высокую стабильность зарядного напряжения (4.2 ±0.05 В).
Пожалуй, единственным недостатком данной микросхемы является ее слишком миниатюрный размер (корпус DFN-10, размер 3х3 мм). Не каждому под силу обеспечить качественную пайку таких миниатюрных элементов.
Из неоспоримых преимуществ хотелось бы отметить следующее:
- Минимальное количество деталей обвеса.
- Возможность зарядки полностью разряженной батареи (предзаряд током 30мА);
- Определение окончания зарядки.
- Программируемый зарядный ток — до 1000 мА.
- Индикация заряда и ошибок (способна детектировать незаряжаемые батарейки и сигнализировать об этом).
- Защита от продолжительного заряда (изменяя емкость конденсатора Ст, можно задать максимальное время заряда от 6,6 до 784 минут).
Стоимость микросхемы не то чтобы копеечная, но и не настолько большая (
1$), чтобы отказаться от ее применения. Если вы дружите с паяльником, я бы порекомендовал остановить свой выбор на этом варианте.
Более подробное описание находится в даташите.
Можно ли заряжать литий-ионный аккумулятор без контроллера?
Да, можно. Однако это потребует плотного контроля за зарядным током и напряжением.
Вообще, зарядить АКБ, к примеру, наш 18650 совсем без зарядного устройства не получится. Все равно нужно как-то ограничивать максимальный ток заряда, так что хотя бы самое примитивное ЗУ, но все же потребуется.
Самое простейшее зарядное устройство для любого литиевого аккумулятора — это резистор, включенный последовательно с аккумулятором:
Сопротивление и мощность рассеяния резистора зависят от напряжения источника питания, который будет использоваться для зарядки.
Давайте в качестве примера, рассчитаем резистор для блока питания напряжением 5 Вольт. Заряжать будем аккумулятор 18650, емкостью 2400 мА/ч.
Итак, в самом начале зарядки падение напряжение на резисторе будет составлять:
Ur = 5 — 2.8 = 2.2 Вольта
Предположим, наш 5-вольтовый блок питания рассчитан на максимальный ток 1А. Самый большой ток схема будет потреблять в самом начале заряда, когда напряжение на аккумуляторе минимально и составляет 2.7-2.8 Вольта.
Таким образом, сопротивление резистора, необходимое для ограничения тока в самом начале заряда на уровне 1 Ампера, должно составлять:
R = U / I = 2.2 / 1 = 2.2 Ом
Мощность рассеивания резистора:
Pr = I 2 R = 1*1*2.2 = 2.2 Вт
В самом конце заряда аккумулятора, когда напряжение на нем приблизится к 4.2 В, ток заряда будет составлять:
Iзар = (Uип — 4.2) / R = (5 — 4.2) / 2.2 = 0.3 А
Т.е., как мы видим, все значения не выходят за рамки допустимых для данного аккумулятора: начальный ток не превышает максимально допустимый ток заряда для данного аккумулятора (2.4 А), а конечный ток превышает ток, при котором аккумулятор уже перестает набирать емкость (0.24 А).
Самый главный недостаток такой зарядки состоит в необходимости постоянно контролировать напряжение на аккумуляторе. И вручную отключить заряд, как только напряжение достигнет 4.2 Вольта. Дело в том, что литиевые аккумуляторы очень плохо переносят даже кратковременное перенапряжение — электродные массы начинают быстро деградировать, что неминуемо приводит к потери емкости. Одновременно с этим создаются все предпосылки для перегрева и разгерметизации.
Защита, встроенная в аккумулятор не позволит его перезарядить ни при каких обстоятельствах. Все, что вам остается сделать, это проконтролировать ток заряда, чтобы он не превысил допустимые значения для данного аккумулятора (платы защиты не умеют ограничивать ток заряда, к сожалению).
Зарядка при помощи лабораторного блока питания
Если в вашем распоряжении имеется блок питания с защитой (ограничением) по току, то вы спасены! Такой источник питания уже является полноценным зарядным устройством, реализующим правильный профиль заряда, о котором мы писали выше (СС/СV).
Все, что нужно сделать для зарядки li-ion — это выставить на блоке питания 4.2 вольта и установить желаемое ограничение по току. И можно подключать аккумулятор.
Вначале, когда аккумулятор еще разряжен, лабораторный блок питания будет работать в режиме защиты по току (т.е. будет стабилизировать выходной ток на заданном уровне). Затем, когда напряжение на банке поднимется до установленных 4.2В, блок питания перейдет в режим стабилизации напряжения, а ток при этом начнет падать.
Когда ток упадет до 0.05-0.1С, аккумулятор можно считать полностью заряженным.
Как видите, лабораторный БП — практически идеальное зарядное устройство! Единственное, что он не умеет делать автоматически, это принимать решение о полной зарядке аккумулятора и отключаться. Но это мелочь, на которую даже не стоит обращать внимания.
Как заряжать литиевые батарейки?
И если мы говорим об одноразовой батарейке, не предназначенной для перезарядки, то правильный (и единственно верный) ответ на этот вопрос — НИКАК.
Дело в том, что любая литиевая батарейка (например, распространенная CR2032 в виде плоской таблетки) характеризуется наличием внутреннего пассивирующего слоя, которым покрыт литиевый анод. Этот слой предотвращает химическую реакцию анода с электролитом. А подача стороннего тока разрушает вышеуказанный защитный слой, приводя к порче элемента питания.
О том же, как заряжать литиевые аккумуляторы (будь то аккумулятор телефона, 18650 или любой другой li-ion аккумулятор) шла речь в начале статьи.
Где покупать микросхемы?
Можно, конечно, купить в Чипе-Дипе, но там дорого. Поэтому я всегда беру в одном очень секретном магазине)) Самое главное, правильно выбрать продавца, тогда заказ придет быстро и наверняка.
Для вашего удобства, я собрал самых надежных продавцов в одну таблицу, пользуйтесь на здоровье:
Источник