- Что можно запитать от 100Вт солнечной панели Комментировать
- “100Вт” ≠ 100Вт
- Что можно записать от 100Вт солнечной панели?
- Интенсивность солнечного излучения в течение дня
- Влияние местоположения на выработку энергии
- Учитываем использование в течение года
- Учитываем потери
- Подбираем контроллер заряда и аккумулятора для хранения энергии
- Подбираем инвертор
- Рассчитываем время автономной работы
- Добавить комментарий Отменить ответ
- Добро пожаловать в блог
- Собираем зарядку из солнечных панелей
- Подготовка материала
- Сборка зарядки
Что можно запитать от 100Вт солнечной панели Комментировать
Что может работать от одной 100Вт солнечной панели? Этот вопрос мы часто слышим от новичков в мире солнечной энергетики и от тех, кто только собирается в неё погрузиться.
Обычно, когда мы проектируем солнечную электростанцию, то мы начинаем со списка электроприборов, которые должны работать от солнечной электростанции, т.е. составляем список нагрузок. Исходя из этого подбирается количество и мощность солнечных панелей, а также сопутствующее оборудование. Сейчас мы будем действовать от обратного. Посмотрим что мы сможем запитать от одной солнечной панели мощностью 100 ватт.
“100Вт” ≠ 100Вт
Когда мы говорим, что солнечная панель имеет мощность 100Вт, то такую мощность она выдаёт при интенсивности солнечного излучения 1000Вт/м². Обычно такая интенсивность бывает летом в ясную погоду, когда солнце находится в зените. Естественно, производители не бегают каждый раз на улицу с солнечной панелью, они тестируют их мощность при определённых лабораторных условиях – STC (Standart Test Conditions) или так называемых “стандартных тестовых условиях”. Эти условия следующие:
- интенсивность солнечного излучения 1000 Вт/м²
- температура воздуха 25°С
- солнечные лучи падают перпендикулярно на солнечную панель
- скорость ветра равна нулю
- масса воздуха 1.5
- некоторые другие критерии
Таким образом, реальная выходная мощность солнечных панелей может варьироваться в зависимости внешних погодных условий. При расчётах обычно мы занижаем мощность солнечных панелей, основываясь на разнице между лабораторными испытаниями и вашей реальной установкой.
Если 12В солнечная панель имеет мощность 100Вт, то имеется ввиду мгновенная мощность. Если проведём измерения при условиях STC, то мы должны получить выходное напряжение
18В и ток 5.55А. Мощность – это произведение напряжения на ток (P=V*I), поэтому 18В·5.55А = 100Вт.
Здесь даже можно провести небольшую аналогию с автомобилем, мощность – это как скорость автомобиля. Если автомобиль едет с постоянной скоростью 100км/ч, то за 1 час он проедет 100км. Тоже самое с солнечной панелью. Чтобы определить какое количество энергии будет произведено за определённое время, нужно количество ватт умножить на количество часов. Например, за 1 час будет сгенерирован 100Вт x 1ч = 100ватт·часов = 100Вт·ч .
Если рассмотреть всё это на конкретной солнечной панели, то можно взять солнечную панель Delta SM 100-12P оптимальное рабочее напряжение 18.1В (Ump) и оптимальный рабочий ток 5.52А. 18.1В х 5.52А = 99.91Вт (100Вт) .
Что можно записать от 100Вт солнечной панели?
Теперь нам нужно выяснить, сколько часов нужно подставлять в уравнение, чтобы определить, сколько энергии будет генерироваться солнечной панелью за день. А сколько часов реального солнечного излучения равносильно стандартным тестовым условиям? Как мы отметили выше, интенсивность солнечного излучения близка или идентичная тестовым, в полдень, когда солнце находится в зените, т.е в период 12.00-13.00.
Сколько часов солнечная панель будет подвергаться солнечному излучению в течение дня?
Интенсивность солнечного излучения в течение дня
Количество часов солнечного света, равное полудню, называется инсоляцией или эффективным солнечным часом (ESH, Effective Solar Hours).
Вы прекрасно знаете, что несмотря на то, что солнце встаёт в 8 утра, оно не такое яркое как в полдень. Поэтому, если продолжительность солнечного дня составляет 10-12 часов, то нельзя просто умножить 100Вт х 10часов (или на 12). Так, между 8 и 9 утра интенсивность солнца приблизительно наполовину меньше, чем в полдень. Поэтому 1 утренний час приблизительной равен половине эффективного солнечного часа. Кроме того, зимой световой день значительно короче чем летом, еще и интенсивность излучения слабее – т.е. количество эффективных солнечных часов в течение года сильно варьируется.
Влияние местоположения на выработку энергии
Ваше местоположение также определяет количество эффективных солнечных часов. Например, для Казани количество эффективных солнечных часов составляет 3.5ч, для Москвы 3ч., для Краснодара 3.7ч – это усреднённые значения в день в течение года по данным с сайта NREL PVWatts Calculator.
Расчёт в PVWatts Calculator для Казани
Учитываем использование в течение года
Возвращаясь к рассматриваемому вопросу о том, что можно запитать от 100Вт панели, теперь нужно рассмотреть будут ли вы её использовать круглый год или только в определённый период, например, в период весна-осень. Если вы хотите использовать в течение всего года, то нужно рассмотреть самый худший вариант, т.е. самый худший месяц в году с точки зрения солнечной энергетики.
Для этого можно воспользоваться еще один полезным сервисом, он чем-то похож на NREL PVWatts Calculator, но здесь сразу отображается оптимальный угол наклона солнечных панелей для вашего местоположения. Данный сервис полностью на английском языке, но там всё интуитивно понятно и можно самостоятельно разобраться что к чему за пару минут.
Для начала из выпадающего списка нужно выбрать страну (Russian Federation), затем город (Kazan’) и потом направление солнечных панелей, в нашем случае выбираем юг (Facing directly South).
Выбираем страну, город, направление
Далее система предлагает выбрать угол наклона солнечной панели среди нескольких предложенных вариантов:
- Вертикальная поверхность
- Оптимальный среднегодовой угол
- Изменение угла наклона в течение года
- Максимальная зимняя выработка
- Максимальная летняя выработка
- Плоская поверхность
Выбираем угол наклона солнечных панелей
Поскольку мы размещаем одну 100Вт панель, то давайте разместим её под “зимним” углом. Для Казани самый худший месяц году – это декабрь, в котором в среднем за день только 1.41 эффективных солнечных часа. Получается в декабре за один день 100Вт будет вырабатывать 141Вт·ч. Только нужно помнить, что это усреднённое значение для всего месяца, поэтому в какие-то дни выработка будет больше, в какие меньше, а в какие-то может даже будет близко к этому значению, но не каждый день. В среднем, если мы просуммируем выработку за все дни в декабре и разделим на количество дней, то получим значение близкое к 141Вт·ч.
Учитываем потери
Ничто в реально работающей системе не обходится без потерь, поэтому нужно учитывать падение напряжения на проводах, пыль и грязь на поверхности солнечных панелей, потери на контроллере заряда и прочее. Поэтому мы умножим 141Вт·ч х 0,7 = 98.7Вт·ч (30% фактор потерь). Это всё равно, что потерять 1/3 вырабытываемой мощности, но это реальность и от нёё никуда не деться. В итоге в декабре мы получили прибл. 100Вт·ч/день. Что теперь можно сделать с этой мощностью?
Подбираем контроллер заряда и аккумулятора для хранения энергии
Для начала, вырабатываемую энергию нужно где-то хранить, чтобы можно было использовать её позже, когда она понадобится. Для хранения используется аккумуляторная батарея. Перед этим нам нужен контроллер заряда, который регулирует процесс подачей энергии в аккумуляторную батарею глубокого разряда, которую можно заряжать и разряжать на регулярной основе. В качестве контроллера заряда идеально подойдёт EPSOLAR 1012LS – это простой, но надёжный ШИМ-контроллер заряда с номинальным напряжением 12В и и максимальным током заряда до 10А.
Какой ёмкости аккумулятор нужно использовать? Итак у нас есть 100Вт·ч которыми мы заряжаем 12В аккумулятор. Поскольку ватты делённые на вольты равны амперам, то получаем 100Вт·ч : 12В
8А·ч . Несмотря на то, что используем аккумуляторы глубокого разряда, они всё равно не любят разряда более чем на 50% (самый оптимальный вариант – это разряд не более чем на треть). Тогда оптимальный вариант аккумулятора для зимнего времени 8А·ч х 2 = 16А·ч.
Количество энергии, которую может хранить аккумулятор меняется в зависимости от температуры. Так, запасённая энергия при 0°С на 15% меньше, чем при 20°С, поэтому умножаем 16А·ч х 1.15 = 18.4 А·ч .
Подбираем инвертор
Далее нам нужно использовать инвертор, для преобразования постоянного напряжения от аккумулятора в привычные нам 220В. Оптимальный вариант для маленьких система это компактный 300Вт инвертор ИС2-12-300. Возьмём коэффициент потерь на преобразование 5%. Тогда 18.4 А·ч / 0.95 = 19.4 А·ч ., округлим полученное значение до 19А·ч.
Рассчитываем время автономной работы
Солнце светит не каждый день, поэтому нам нужно учитывать пасмурные дни, дождь снег. Нам нужно для себя рассчитать в течение какого количество дней без солнца мы хотели бы иметь запас энергии. Это называется днями автономии. Скажем так, нам нужно 2 дня автономии, тогда 19А·ч. х 2 = 38А·ч, получается, совместно с 100Вт солнечной панелью мы должны использовать аккумулятор ёмкостью
40А·ч. Можно чуть больше, можно чуть меньше.
Хорошим выбором является аккумулятор Delta GEL 12-33 – гелевый аккумулятор ёмкостью 33А·ч, оснащён цифровым индикатором напряжения, уровня заряда, а также количества отработанных дней. Под крышкой аккумулятора имеются дополнительный контейнеры со специализированным раствором, долив которого позволяет продлить срок службы батареи на 15-30%. Также не плохим выбором будет AGM аккумулятор ВОСТОК СК-1233 ёмкостью также 33А·ч.
Теперь мы можем подумать, что делать с вырабатываемой и запасённой мощностью. Итак, зимой у нас есть 100Вт*ч запасённой мощности. Их хватило бы на:
- На питание 4-х LED ламп мощностью 5 Вт в течение в часов, или
- На 2 часа работы ноутбука со средним потреблением 50Вт*ч, или
- На просмотр в течение
1.5 часов телевизора, или
Это всё мы рассчитали для самого “плохого” зимнего месяца, в летнее время выработка энергии будет гораздо больше и соответственно, нужно будет использовать более ёмкий аккумулятор.
Думаем алгоритм расчёта вам понятен и при необходимости вы сможете самостоятельно рассчитать выработку энергии как с другим номиналом солнечной панели, так и для другого времени года.
Добавить комментарий Отменить ответ
Добро пожаловать в блог
Вы попали в блог компании REENERGO. Здесь мы стараемся регулярно публиковать полезные и интересные новости и статьи из области альтернативной энергетики.
Источник
Собираем зарядку из солнечных панелей
Скажите, как часто вы заряжаете свой сотовый телефон? Один, два раза в неделю или же один, или два раза в день. А вы никогда не задумывались, как можно заряжать телефон и при этом ни копеечки за это не платить. Одним из таких бесплатных вариантов является сборка зарядного устройства из солнечных панелей. В этой статье я расскажу как просто и быстро сделать зарядку для сотового из солнечных панелей.
Подготовка материала
Я не буду изобретать велосипед и пытаться каким-либо образом самостоятельно производить солнечную батарею, а воспользуюсь готовым решением. Уже готовые солнечные батареи можно приобрести через интернет, например, я сделал заказ на самом популярном в России интернет портале Aliexpress.
Мною было сразу заказано три панельки со следующими параметрами: напряжение 12 Вольт, а мощность 1,5 ватта.
При этом на момент заказа они обошлись мне в 180 рублей за одну пластину.
Так же мной был заказан понижающий до 5 Вольт преобразователь, за который я заплатил чуть меньше 50 рублей.
Как только компоненты были доставлены (что заняло порядка трех недель), я сразу приступил к сборке солнечной зарядки для сотового телефона.
Помимо уже озвученных элементов нам еще понадобя тся: гибкие провода (желательно с красной и черной изоляцией), паяльник с припоем и канифолью, разделочный нож.
Итак, теперь все готово, переходим к сборке нашей конструкции.
Сборка зарядки
Итак, включаем паяльник и соединяем наши солнечные панели параллельно
Это позволит оставить напряжение неизменным (равным 12 Вольт), но поднять мощность всей нашей установки. И получается, если у нас были три панели по 1,5 Ватта, то теперь они нам выдают 3,5 Ватта (в теории). А увеличение мощности положительно скажется на скорости зарядки гаджетов.
Затем припаиваем, обязательно соблюдая полярность концы от солнечных батарей с нашим преобразователем:
И все, по факту наша с вами зарядка готова. Теперь достаточно просто вставить шнур и подключить через него наш телефон и зарядка должна пойти.
Примечание. Как вы смогли увидеть на видео, зарядка обычного телефона вполне запустилась, а вот смартфон Xiaomi Redmi 3s заряжаться отказался. Объяснение почему, будет дано в заключении.
Но оставлять нашу конструкцию в таком виде нельзя, поэтому нам еще понадобится платформа для закрепления панелей, корпус для преобразователя и горячий клей:
Преобразователь упаковываем в корпус из-под старой подзарядки и фиксируем модуль внутри с помощью горячего клея:
Солнечные элементы же закрепляем на доске:
Скрутку пропаял и заизолировал с помощью термоусадки, а чтобы жгут проводов имел аккуратный вид, дополнительно стянул изолентой:
Как вы уже поняли, сама по себе конструкция получилась рабочая, но заряжать мой смартфон она отказалась, я это связываю с тем, что мои три панельки (а вследствие этого и вся зарядка в целом), выдает недостаточную мощность. Для зарядки простых приборов (а я также пробовал заряжать через эту зарядку музыкальную колонку, плеер и даже пауэрбанк, везде зарядка шла) ее вполне хватает. А вот чтобы запустить зарядку телефона нужно увеличить количество солнечных элементов как минимум в два раза (а лучше в три).
Примечание. Уже собранная установка выдает от лампы накаливания следующее напряжение на холостом ходу:
Уже в процессе завершения этой зарядки появились идеи как усовершенствовать и доработать данное устройство. Если вам интересна эта тема, то присоединяйтесь к каналу и в следующих материалах вы увидите зарядку 2.0.
Если статья оказалась вам полезна или интересна, то ставьте палец вверх и спасибо за ваше внимание!
Источник