- Автономный блок питания на базе ветрогенератора
- Контроллер заряда аккумулятора для солнечного или ветро- генератора
- Контроллер для ветрогенератора
- Здесь вы узнаете:
- Что такое контроллер заряда для ветрогенератора
- Принцип действия контроллера для ветрогенератора
- Технические характеристики
- Схемные решения для сборки своими руками
- Работа «балластной» схемы с минусом
- Как действует «балластная» схема с плюсом
- Усложнённый вариант схемы контроллера
- Как сделать устройство управления своими руками
- Расчет контроллера
- Подготовительные работы
- Сборка устройства
- Китайская электронная альтернатива
- Средние цены
Автономный блок питания на базе ветрогенератора
Есть множество случаев, когда проживая за городом, Вам может понадобиться небольшое количество электроэнергии для питания маломощного устройства. Например, для работы компактной метеостанции, контроля уровня воды в баке, управления автоматикой теплицы, для дежурного освещения садовой дорожки или небольшого помещения и других устройств. Для каждого из них необходимо иметь источник питания — батарею, аккумулятор или сетевой блок питания (БП). В случае периодической нагрузки устройства, целесообразно использовать БП на базе аккумулятора. Причем для его зарядки, используя устройства в этих условиях, наиболее выгодно использовать возобновляемую энергию ветра, что сделает БП экономичным и автономным.
В нашем случае, рассмотрим вариант использования энергии ветра, для дежурного освещения садового туалета, отдельно стоящего на краю участка. Так как яркое освещение на этом объекте не нужно, то для решения этой задачи достаточно малых мощностей. В течение суток аккумулятор заряжается от энергии ветра, а в темное время суток отдает ее по мере необходимости.
Для изготовления БП потребуется ветрогенератор мощностью в несколько ватт, аккумулятор небольшой емкости и зарядное устройство для него, устройство согласования напряжений.
Ветрогенератор
В качестве электрогенератора используется доработанный компактный автомобильный стартер на постоянных магнитах. Выходные данные генератора: переменный ток мощностью 1,0…6,5 вт (в зависимости от скорости ветра). Напряжение – 1…6 в; ток – 0,2…1,1 а (в диапазоне: малая — средняя скорость ветра).
Аккумулятор и зарядное устройство.
В качестве накопителя энергии применим литий-ионный аккумулятор от мобильного телефона. Схема и порядок изготовления зарядного устройства (ЗУ) для этого аккумулятора представлены в статье.
Входные данные зарядного устройства: постоянный ток напряжением 5,5…30 В. Выходное напряжение предлагаемого зарядного устройства в пределах 4,18 – 4,20 В. При использовании другого аккумулятора, при соответствующей регулировке, ЗУ позволяет получить выходное напряжение в пределах 2,5…27 В.
Согласование напряжений
Напряжение и ток от ветровой турбины изменяются в зависимости от скорости ветра, поэтому для практического использования, мы должны быть в состоянии зарядить аккумулятор и сохранить там энергию для использования. Для этого, электроэнергия от ветрогенератора должны быть преобразована из переменного тока в постоянный, с напряжением достаточным для работы зарядного устройства аккумулятора.
Предложенный ветрогенератор, как видим по выходным характеристикам, не способен выдавать необходимое напряжение по причине низкой частоты вращения. При средней скорости ветра, на выходе удается получить напряжение порядка 2…5 В, а для заряда аккумулятора требуется напряжение более 5,5 вольт. Выход из положения — применение простого преобразователя напряжения, собранного на основе четырехкратного умножителя напряжения. Подавая на вход преобразователя 2…5 В переменного тока, на выходе получим 5,5…12 В постоянного тока, что вполне достаточно для заряда аккумулятора. Один из вариантов четырехкратного умножителя напряжения, использованный в предлагаемом устройстве, показан на схеме.
Этот вариант умножителя имеет симметричную схему и хорошую нагрузочную способность, выполнен из дешевых и доступных элементов. Использование умножителя, вместо повышающего трансформатора, позволяет уменьшить габариты и вес устройства, исключить выпрямитель напряжения.
В итоге, схема автономного блока питания принимает следующий вид.
Схема состоит из 4-х блоков:
А1 – ветрогенератор;
А2 — умножитель напряжения;
А3 – аккумулятор и зарядное устройство;
А4 – блок освещения.
Изготовление автономного блока питания
1. Умножитель напряжения (блок А2), по приведенной выше схеме, собираем и распаиваем на плате размером 65 х 35 мм, вырезанной из универсальной монтажной текстолитовой платы.
Для монтажа схемы использованы нереализованные ранее отечественные диоды Д226Г, имеющие эффективный теплоотвод. Электролитические конденсаторы импортные. При необходимости, возможно собрать эту схему более компактно, используя современные импортные диоды с минимально возможным прямым напряжением, для повышения эффективности преобразователя напряжения.
Необходимо учесть, что при работе устройства, максимальный ток протекающий через диоды будет равен удвоенному току нагрузки, а на электролитах развивается удвоенное амплитудное значение входного напряжения. Соответственно конденсаторы и диоды должны быть рассчитаны на эти параметры.
Дополнительно, в блок умножителя напряжения, добавлен резистор R6 для ограничения максимального тока и стабилитрон D5 для ограничения напряжения. Эти элементы должны работать для защиты устройства при сильных ветрах. Для сглаживания пульсаций, на выходе умножителя напряжения, подключен электролит С5 (на схеме перенесен в блок А3).
2. Аккумулятор и зарядное устройство (А3). В качестве накопителя энергии применим литий-ионный аккумулятор от мобильного телефона. Схема и порядок изготовления зарядного устройства для этого аккумулятора представлены в статье.
Настройка зарядного тока схемы. Подключив к схеме разряженный аккумулятор (о чем сообщит включившийся светодиод), резистором R2 устанавливаем по тестеру величину зарядного тока – 100…150 мА.
3. Блок освещения (А4) включает в себя цепь, состоящую из трех последовательно включенных сверхярких светодиодов, ограничительного резистора R5 и выключателя питания светодиодов. Светодиоды с ограничительным резистором смонтированы на отдельной плате.
4. Изготовим плату для установки литий-ионного аккумулятора. Вырезаем из универсальной монтажной текстолитовой платы прямоугольник размером 40 х 55мм, прорезаем в плате два паза шириной 0,7…1,0мм для установки контактов. Расположение контактов зависит от модели используемого литий-ионного аккумулятора. Из медной или латунной пластины толщиной 0,5…0,7мм вырезаем Г-образные контакты и крепим их на обратной стороне платы с помощью пайки или другого соединения. Припаиваем контакты к соответствующим выходным выводам зарядного устройства и блоку освещения. На плате данного устройства выполнены две группы контактов разной высоты для параллельного подключения двух аккумуляторов (для увеличения емкости), установленных друг над другом.
5. Сборка блока питания. Собираем изготовленные блоки по приведенной выше схеме, с помощью монтажного провода. В качестве корпуса возможно использовать подходящую по размерам коробку, светильник. Желательно в пыле и влагозащищенном исполнении (работа на открытом воздухе). В данном случае использован пластмассовый корпус от старого фонарика.
6. Проверяем работу устройства.
На вход устройства подаем переменный ток напряжением 2,3 В.
Убеждаемся в правильной работе изготовленного устройства.
7. Устанавливаем собранные блоки в корпус. Индикатор заряда аккумулятора закрепляем на видном месте. Из корпуса выходит провод (контактная группа) для присоединения к генератору и включателю освещения.
8. По возможности, герметизируем зазоры от попадания пыли и влаги.
Источник
Контроллер заряда аккумулятора для солнечного или ветро- генератора
26 сентября 2006 г.
Последние дополнения 18 февраля 2008 г.
Введение
Когда аккумулятор для зарядки подсоединяется к солнечной панели, обычно в цепь необходимо включать контроллер для предупреждения перезаряда. Контроль заряда может быть выполнен по различным схемам. Солнечные системы небольшой мощности могут использовать аналоговым контроллеры. Пример – рисунок в данной статье. В системах высокой мощности используются контроллеры с последовательным отключением заряда, или контроллеры верхней точки ( maximum power-point – MPPT). Последовательные регуляторы управляют зарядным током, прерывая его, когда аккумулятор заряжается полностью. В MPPT контроллерах используются индуктивности для сохранения энергии и высокочастотные переключатели для передачи энергии в аккумулятор.
Эта схема использует параллельный способ подключения. При этом способе солнечная панель всегда подключена к аккумулятору через последовательный диод. Когда солнечная панель заряжает аккумулятор до желаемого максимального напряжения, схема параллельно солнечной панели подключает нагрузочный резистор, чтобы поглощать избыточную мощность с солнечной панели.
Основным преимуществом параллельного способа регулирования солнечной панели является отсутствие постоянно рассеивающего часть мощности переключающего транзистора в силовой цепи между солнечной панелью и аккумулятором. При параллельном способе транзистор не снижает эффективности солнечной панели, он включается только когда появляется избыточная энергия.
Другое отличие между параллельным и последовательным регуляторами – постоянное подключение к нагрузке. В последовательных регуляторах, когда аккумулятор достигает полного заряда, нагрузка от солнечной панели отключается. При использовании параллельного регулятора нагрузка к панели подключена всегда. Это отличие позволяет использовать параллельные регуляторы совместно с ветрогенераторами постоянного тока. Ветрогенераторы должны быть всегда подключены к нагрузке для того, чтобы лопасти ветроколеса не крутились слишком быстро при порывах ветра. Слишком быстрое вращение лопастей ведет к износу подшипников. При очень сильных порывах ветра лопасти могут оторваться.
Спецификация
Солнечная панель. Выходное напряжение в отсутствии нагрузки 18 В (36 элементов).
Солнечная панель. Максимальный ток короткого замыкания 0…1 А.
Аккумулятор. Номинальное напряжение 12 В.
Аккумулятор. Емкость 0.1…50 А·ч.
Принципиальная электрическая схема
Солнечная энергия из PV панели направляется через диод Шоттки 1N5818 в аккумулятор. Когда аккумулятор достигает полного заряда, включается выход нижней половины двойного операционного усилителя TLC2272. Это включает MOSFET IRFD110 и подсоединяет к аккумулятору нагрузочный резистор 68 Ом / 3 Вт. Подключенная нагрузка вызовет падение напряжения аккумулятора и цепь компаратора снова выключится. Такая генерация продолжится до тех пор, пока есть солнечная энергия. Конденсатор 300 нФ между выходом и плюсовым входом операционного усилителя снижает частоту генерации до нескольких герц. Два резистора 100 кОм задают опорное напряжение 4.5 В на входе операционного усилителя.
Транзистор 2N3906 со стабилитроном 1N5242 на 12 В цепи базы включает цепь компаратора когда напряжение с PV панели превысит 12 В. Верхняя половина операционного усилителя TCL2272 инвертирует управляющий сигнал подключения нагрузки. На выход операционного усилителя подключен светодиод повышенной яркости. Светодиод включается когда заряд аккумулятора достигнет максимума. Светодиод не расходует полезной энергии, поскольку включается только при полном заряде аккумулятора.
Микросхема 78L09 вырабатывает стабилизированное напряжение 9 В для питания компаратора. Питание схемы производится только с PV панели, так как ночью PV панель напряжения не вырабатывает.
Эта схема может быть модифицирована для большего тока заряда, для чего надо заменить диод 1N5818, нагрузочное сопротивление 68 Ом и MOSFET IRFD110 более мощными компонентами. Если нагрузочный резистор подсоединить непосредственно параллельно PV панели, в середине солнечного дня ее выходное напряжение упадет до 12 В или ниже. Для PV панелей большей мощности потребуется нагрузочный резистор с меньшим сопротивлением и большей рассеиваемой мощностью. В холодном климате нагрузочный резистор может служить нагревателем для того, чтобы держать аккумулятор в тепле.
Более мощная версия схемы может работать с ветрогенератором, хотя автор это утверждение не проверял. Для версии этой схемы для тока 20 А транзистор IRFD110 может быть заменен на IRFZ44N, диод Шоттки 1N5818 – на 20L15T. Оба этих элемента должны быть установлены на теплоотводящие радиаторы. Нагрузочный резистор должен иметь сопротивление 0.6 Ом и мощность 250 Вт. В этом случае эта схема может управлять током 20 А при напряжении 12 В.
Настройка
Подключите PV панель к клеммам PV, а аккумулятор к клеммам BAT. Аккумулятор для более простой настройки должен быть предварительно заряжен. Сориентируйте панель на солнце и измеряйте напряжение на аккумуляторе вольтметром. Вращайте винт 20-оборотного переменного резистора 100 кОм до тех пор, пока светодиод не начнет мигать, затем медленно продолжайте вращение до тех пор, пока напряжение на клеммах аккумулятора не достигнет желаемого значения.
Использование
Сориентируйте панель на солнце. Когда напряжение на клеммах аккумулятора достигнет верхней точки, светодиод начнет мигать короткими импульсами с длинными промежутками между ними. По мере дальнейшего заряда аккумулятора, мигание светодиода изменится. Он будет мигать длинными импульсами с короткими промежутками.
Перевод: Nsgvid по заказу РадиоЛоцман
Источник
Контроллер для ветрогенератора
Здесь вы узнаете:
Контроллер – это устройство, отвечающее за преобразование переменного напряжения, вырабатываемого генератором, в постоянное, и контроль заряда. Можно приобрести это устройство, а можно сделать самостоятельно.
Что такое контроллер заряда для ветрогенератора
Контроллер – это электронное устройство, отвечающее за преобразование переменного напряжения, вырабатываемого генератором в постоянное, и контроль заряда аккумуляторных батарей. Наличие контроллера в схеме работы ветровой установки позволяет осуществлять работу ветрового генератора в автоматическом режиме вне зависимости от внешних факторов (скорость ветра, погодные условия и т.д.).
Функцию контроля за величиной заряда выполняет балластный регулятор, или контроллер. Это электронное устройство, отключающее аккумулятор при возрастании напряжения, или сбрасывающее излишки энергии на потребитель — ТЭН, лампу или иной простой и нетребовательный к некоторым изменениям питания прибор. При падении заряда контроллер переключает АКБ в режим заряда, способствуя восполнению запаса энергии.
Первые конструкции контроллеров были простыми и позволяли только включать торможение вала. Впоследствии функции устройства были пересмотрены, и лишнюю энергию начали использовать более рационально. А с началом использования ветрогенераторов в качестве основного источника питания для дачных или частных домов проблема в использовании лишней энергии отпала сама собой, так как в настоящее время в любом доме всегда найдется, что подключить.
Существуют разные конструкции контроллеров. Можно приобрести готовый прибор, изготовленный в производственных условиях и точно выполняющий свои функции. Но чаще владельцы самодельных ветряков предпочитают собирать контроллеры самостоятельно, что обходится гораздо дешевле, проще ремонтируется и намного понятнее, чем устройство заводского изготовления.
Принцип действия контроллера для ветрогенератора
Для различных типов ветровых генераторов используют различные виды и конструкции контроллеров, но основные принципы работы подобных устройств, можно разделить на два типа, это:
- Для ветровых установок относительно не большой мощности: при достижении напряжения на клеммах аккумуляторных батарей выше 15,0 В, контроллер перемыкает обмотки генератора, что приводит к остановке вращения лопастей ветровой установки. При снижении напряжения до 13,5 В, контроллер дает команду на разблокировку обмоток, и установка начинает работать в нормальном режиме.
- Для мощных ветровых установок – в комплекте с электронным блоком контроллера монтируется балластный резистор с большим сопротивлением. При достижении напряжения на клеммах аккумуляторов в 14,0 – 15,0 В, контроллер не отключает ветровую установку, а «лишнюю» энергию сжигает на балластном сопротивлении. В качестве балласта могут быть использованы нагревательные элементы (ТЭНы), служащие для нагрева воды в системах горячего водоснабжения или отопления зданий и сооружений.
Технические характеристики
При покупке контроллера заряда для ветрогенератора необходимо внимательно изучить его техпаспорт. При выборе важны характеристики:
- мощность — должна соответствовать мощности ветровой установки;
- напряжение — должно соответствовать напряжению АКБ, установленных на ветряк;
- макс. мощность — обозначает максимально допустимую мощность для модели контроллера;
- макс. ток — обозначает, с какими максимальными мощностями ветрогенератора может работать контроллер;
- диапазон напряжения — показатели макс. и мин. напряжения АКБ для адекватной работы устройства;
- возможности дисплея — какие данные об устройстве и его работе выводятся на дисплей у той или иной модели;
- условия эксплуатации — при каких температурах, уровне влажности может работать выбранное устройство.
Если вы не можете подобрать устройство контроля заряда самостоятельно, свяжитесь с консультантом и покажите ему технический паспорт своего ветряка. Прибор выбирается в соответствии с возможностями ветровой установки. Неправильные условия эксплуатации и отклонения от диапазона напряжения пагубно скажутся на работе всей ветровой системы.
В настоящее время отечественные и зарубежные компании, специализирующиеся на производстве альтернативных источников энергии, а также их комплектующих, выпускают несколько видов контроллеров, успешно работающих в ветровых установках.
PWM (ШИМ) контроллеры – устройства с широтно-импульсной модуляцией (ШИМ). В аппаратах данного вида осуществляется процесс управления мощностью, путём изменения импульсов, при постоянной частоте.
Достоинствами данного вида являются:
- Относительно не большие габаритные размеры, в сравнении с аналогами;
- Способность к быстродействию в процессе работы;
- Надежность конструкции.
МРРТ контроллеры – как правило используются в солнечных установках, но могут применяться и в комплекте с ветровыми генераторами. Основой работы устройств данного вида является способность определять точку максимальной мощности, которая характеризуется напряжением и силой тока в конкретный момент времени.
Достоинствами данного вида — являются наиболее эффективными устройствами, в сравнении с аналогами.
Основной недостаток – более высокая стоимость.
Схемные решения для сборки своими руками
За всё время с момента появления первых самодельных ветряков количество схемных решений контроллеров выросло многократно. Многие из схемных разработок далеко не совершенны, но есть и такие варианты, на которые следует обратить внимание.
Для бытового применения, конечно же, актуальными являются простые схемы, требующие небольших финансовых вложений, эффективные и надёжные.
Отталкиваясь от этих требований, начать можно с контроллера для ветрогенератора, созданного на базе реле-регуляторов автомобилей. В схеме применимы как реле с минусовым управляющим контактом, так и реле с плюсовым управляющим контактом.
Этот вариант привлекает малым количеством деталей и простейшим монтажом. Потребуется всего одно реле, один силовой транзистор (полевой), один резистор.
Схема контроллера, вычерченная неким электронщиком своими руками. Здесь всё просто и понятно без лишних слов. Собственно, как и в самой технологичности решения. Минимум деталей – максимум сбережений (+)
Схема носит название «балластная», так как в ней используется дополнительная нагрузка в виде обычной лампочки накаливания. Таким образом, список деталей пополнится ещё одним элементом – лампой.
Используется автомобильная лампа (или несколько ламп) на 12 вольт в зависимости от мощности системы. Также вместо этого элемента допустимо применять нагрузочное сопротивление иного типа: мощный резистор, электронагреватель, вентилятор и т.п.
Работа «балластной» схемы с минусом
Действие автомобильного реле-регулятора напрямую связано с уровнем заряда аккумуляторной батареи. Если напряжение на клеммах АКБ поднимается выше 14.2 вольт, реле срабатывает и размыкает минусовую цепь силового транзистора.
В свою очередь на транзисторе открывается переход, подключающий лампу прямого накала к аккумулятору. В итоге зарядный ток сбрасывается через нить лампы накаливания. При понижении напряжения на клеммах АКБ – обратный процесс. Так осуществляется поддержка стабильного уровня напряжения батареи.
Как действует «балластная» схема с плюсом
Слегка модернизированным вариантом «балластного» контроллера заряда для ветряка является вторая схема на реле-регуляторе с плюсовым управляющим контактом. Например, подойдут реле от автомобилей марки «ВАЗ».
Отличие от предыдущей схемы – применение твердотельного реле, например, GTH6048ZA2 на ток 60A вместо транзистора. Преимущества очевидны: схема выглядит ещё проще и при этом обладает большей надёжностью и эффективностью.
Ещё одно простейшее схемотехническое решение под сборку контроллера заряда АКБ ветрогенератора. Эффективность и надёжность схемы повышается за счёт применения в ней твердотельного реле (+)
Особенность этого простого решения – прямое подключение на клеммы аккумулятора генератора ветряка. Проводники контроллера заряда тоже «посажены» непосредственно на контакты аккумулятора.
По факту обе этих части схемы никак не связаны между собой. Напряжение с ветрогенератора подаётся на батарею постоянно. Когда напряжение на клеммах АКБ достигает значения 14.2 Вт, твердотельное реле подключает нагрузку для сброса. Так аккумулятор защищается устройством от перезаряда.
Здесь балластной нагрузкой может выступать не только лампа накаливания. Вполне реально подключить любое иное устройство, рассчитанное на ток до 60 А. Например, электрический трубчатый нагреватель.
Что ещё важно в этой схеме – действие твердотельного реле характеризуется плавно нарастающей амплитудой. По сути, налицо эффект профессионально изготовленного ШИМ-контроллера.
Усложнённый вариант схемы контроллера
Если предыдущий вариант схемного решения контроллера заряда АКБ только лишь напоминает устройство ШИМ (широтно-импульсная модуляция), здесь данный принцип реализуется конкретно.
Эта схема контроллера для ветряка с трёхфазным генератором отличается некоторыми сложностями, так как предполагает использование микросхем – в частности, операционных усилителей на полевых транзисторах в составе сборки TL084.
Однако на монтажной плате всё выглядит не так сложно, как на бумажном листе.
Схемное решение для сборки контроллера своими руками, где используется микросборка TL084. Принцип работы также выстроен с применением реле для переключения режимов, но есть возможность регулировать точки отсечки (+)
Так же, как и в предыдущих решениях, используется реле в качестве коммутационного элемента для балластной нагрузки. Реле рассчитано на работу с 12-вольтовым аккумулятором, но при желании можно подобрать модель на 24 Вт.
Балластный резистор сделан в виде мощного сопротивления (намотка на керамике нихром). Для регулировки рабочего диапазона напряжений (11.5-18 Вт) в схеме используются переменные резисторы, включенные в цепь управления микроэлектронной сборки TL084.
Работает такой контроллер заряда аккумулятора ветряка следующим образом. Трёхфазный ток, полученный от ветрогенератора, выпрямляется силовыми диодами.
На выходе диодного моста образуется постоянное напряжение, которое подаётся на вход схемы через контакты реле, дополнительный диод, аккумулятор и дальше на внутрисхемный стабилизатор (78L08) и на вход сборки TL084.
Момент переключения триггера в одно из состояний определяется значениями переменных резисторов (Low V и High V) нижнего и верхнего порога напряжений.
Пока на клеммах аккумуляторной батареи присутствует напряжение, не превышающее 14.2 вольта (удовлетворяющее значению настройки R High V), выполняется заряд. Как только значения изменяются в сторону увеличения, операционный усилитель TL084 подаёт сигнал на базу транзистора, которым управляется реле.
Реализованный своими руками продукт по схеме с микросборкой TL084. Всё предельно просто, даже вместо качественной печатной платы выбрана плата под навесной монтаж. Такими моментами всегда радуют самодельные конструкции
Происходит срабатывание реле, цепь питания схемы разрывается и замыкается на балластный резистор. Сброс по балласту проходит до момента разряда аккумулятора, близкого к значению настройки переменного резистора Low V.
Как только это значение достигнуто, вторым операционным усилителем TL084 схема переключается в обратное состояние. Так осуществляется работа контроллера.
Как сделать устройство управления своими руками
Изготовление устройства своими руками доступно только тем, кто имеет некоторые навыки работы с паяльником, в состоянии уверенно читать схемы и вообще имеет хотя бы общее представление об электротехнике и принципах работы электронных устройств. Подходить к вопросу без понимания его сути бессмысленно, так как малейшая ошибка поставит такого мастера в тупик.
Расчет контроллера
Этот момент довольно сложен и зачастую выполняется не столько именно путем расчетов, сколько подгонкой параметров балластного регулятора к имеющимся характеристикам ветрогенератора. Дело в том, что каждое устройство имеет собственные рабочие показатели, несоответствие которым не позволит контроллеру качественно выполнять свои функции. Например, если для устройства потребуется 12 вольт для начала зарядки, а контроллер собран на 24, то такая система попросту не сможет работать.
Для расчета контроллера надо снять все рабочие характеристики с генератора, т.е. проверить ветряк с установленным генератором на производительность в разных режимах работы — на слабых, средних и сильных ветрах. Учесть преобладающую скорость потока, при которой устройство будет работать практически все время. На основании этих данных выбирается напряжение, при котором открывается транзистор, переключающий устройство с одного режима на другой и наоборот.
Подготовительные работы
Прежде, чем приступить к сборке, надо приготовить все необходимые детали, тщательно проверить их номинал. Потребуются инструменты и материалы:
- паяльник
- припой, канифоль
- пассатижи с узкими губками
- пинцет
- соединительный провод (в идеале – двух цветов)
- печатная плата или монтажная панель
Создание печатной платы — непростой процесс, требующий наличия определенных приспособлений, химикатов и пластины фольгированного гетинакса. Проще использовать готовую монтажную панель или обычную пластину из фанеры, пластика или прочих листовых материалов. Тщательно продумать размещение всех элементов на пластине. Рекомендуется объединять их по категориям, чтобы все однотипные детали были сгруппированы в одних местах, так будет проще ориентироваться во время ремонтных работ.
Необходимо предусмотреть световую сигнализацию, свидетельствующую о текущем режиме работы устройства, чтобы при первом же взгляде было сразу видно, загрузка или отдача энергии происходит в данный момент.
Сборка устройства
При должной подготовке и наличии всех необходимых деталей процесс сборки особых проблем не вызывает. Основная задача — правильное соединение всех элементов в соответствии со схемой. При аккуратной и внимательной сборке устройство будет выполнять поставленную задачу вполне качественно, главное, чтобы все детали были исправными и соответствовали заявленным номиналам.
Китайская электронная альтернатива
Изготовление контроллера ветрогенератора своими руками – дело престижное. Но учитывая скорость развития электронных технологий, нередко смысл самостоятельной сборки теряет свою актуальность. К тому же большая часть предлагаемых схем уже морально устарела.
Получается дешевле купить уже готовый продукт, сделанный профессионально, с высоким качеством монтажа, на современных электронных компонентах. Например, приобрести подходящее устройство по разумной стоимости можно на Aliexpress.
Ассортимент предложений на китайском сайте впечатляет. Контроллеры для ветрогенераторов под различный уровень мощности продаются по цене от 1000 руб. Если отталкиваться от этой суммы, в плане сборки аппарата своими руками игра явно не стоит свеч. Так, например, среди предложений китайского портала есть модель для 600-ваттного ветряка. Устройство стоимостью 1070 руб. пригодно для работы с аккумуляторами 12/24 вольта, в режиме рабочего тока до 30А.
Вполне приличный, рассчитанный на 600-ваттный ветрогенератор, контроллер заряда в китайском исполнении. Такое устройство можно заказать из Китая и получить через почту примерно за месяц-полтора
Качественный всепогодный корпус контроллера размерами 100 х 90 мм оснащён мощным радиатором охлаждения. Исполнение корпуса соответствует классу защиты IP67. Диапазон внешних температур от – 35 до +75ºС. На корпусе выведена световая индикация режимов состояния ветрогенератора.
Спрашивается, какой резон тратить время и силы на сборку простенькой конструкции своими руками, если есть реальная возможность купить нечто подобное и технически серьёзное? Ну а если этой модели недостаточно, у китайцев имеются варианты совсем «крутые». Так, среди новых поступлений отметилась модель мощностью 2 кВт под рабочее напряжение 96 вольт.
Китайский продукт из списка нового прихода. Обеспечивает контроль заряда батарей, работая в паре с ветрогенератором мощностью 2 кВт. Принимает на входе напряжение до 96 вольт
Правда, стоимость этого контроллера уже в пять раз дороже предыдущей разработки. Но опять же, если соизмерять затраты на производство нечто подобного своими руками, покупка выглядит рациональным решением.
Единственное что смущает в китайских продуктах – они имеют свойство неожиданно прекращать работу в самых неподходящих случаях. Поэтому купленное устройство часто приходится доводить до ума – естественно, своими руками. Но это значительно легче и проще, чем делать контроллер заряда ветрогенератора своими руками с нуля.
Оценивая перспективы изготовления электроники собственными силами независимо от её назначения, приходится столкнуться с мыслью, что век «самоделкиных» завершается. Рынок перенасыщен готовыми электронными устройствами и модульными комплектующими практически под каждый бытовой продукт. Электронщикам-любителям теперь остаётся единственное дело – заниматься сборкой домашних конструкторов.
Средние цены
Как правило контроллер для ветровой установки изготавливается компанией, производящей ветровые генераторы и поставляется комплектно с прочим оборудование. Однако, по ряду причин, иногда появляется потребность приобрести данный прибор отдельно от основного комплекта. В этом случае необходимо выбрать устройство в соответствии с техническими характеристиками системы и бренда производителя, который является предпочтительнее для каждого индивидуального пользователя.
На рынке данного оборудования представлены следующие, наиболее популярные модели:
«WWS03A-12», производство Китай.
- Мощность — 0.2 кВт;
- Максимальная входная мощность – 0,3 кВт;
- Напряжение постоянного тока – 12,0 В;
- Технология – PWM;
- Назначение – универсальное (ветрогенератор/солнечная батарея).
Стоимость устройства – от 9000,00 рублей.
«WWS04A-12», производство Китай.
- Мощность — 0.4 кВт;
- Максимальная входная мощность – 0,6 кВт;
- Напряжение постоянного тока – 12,0 В;
- Технология – PWM;
- Назначение – универсальное (ветрогенератор/солнечная батарея).
Стоимость устройства – от 12000,00 рублей.
«WWS10A-24-E», производство Китай.
- Мощность — 1.0 кВт;
- Максимальная входная мощность – 2,0 кВт;
- Напряжение постоянного тока – 24,0 В;
- Технология – PWM;
- Назначение – универсальное (ветрогенератор/солнечная батарея).
Стоимость устройства – от 22000,00 рублей.
«Exmork ZKJ-B 1.5 KW-48 Vdc», производство Россия.
- Мощность — 1.5 кВт;
- Максимальная входная мощность – 2,0 кВт;
- Напряжение постоянного тока – 48,0 В;
- Технология – PWM;
- Внешний блок – ТЭНы;
- Температура эксплуатации — -30,0 — +65,0 ℃;
- Габаритные размеры – 430х340х220 мм;
- Габаритные размеры внешнего блока ТЭНов – 360х330х200 мм;
- Вес контроллера – 9,0 кг;
- Вес блока внешних ТЭНов – 5,0 кг.
Стоимость устройства – от 27000,00 рублей.
«Exmork ZKJ-B 2KW-24 Vdc», производство Россия.
- Мощность — 2.0 кВт;
- Максимальная входная мощность – 2,5 кВт;
- Напряжение постоянного тока – 24,0 В;
- Технология – PWM;
- Внешний блок – ТЭНы;
- Температура эксплуатации — -30,0 — +40,0 ℃;
- Габаритные размеры – 590х490х315 мм;
- Габаритные размеры внешнего блока ТЭНов – 490х460х310 мм;
- Вес контроллера – 23,0 кг;
- Вес блока внешних ТЭНов – 15,5 кг.
Стоимость устройства – от 46000,00 рублей.
«Exmork ZKJ-B 5KW-48Vdc», производство Россия.
- Мощность — 5.0 кВт;
- Максимальная входная мощность – 5,5 кВт;
- Напряжение постоянного тока – 48,0 В;
- Технология – PWM;
- Внешний блок – ТЭНы;
- Температура эксплуатации — -30,0 — +40,0 ℃;
- Габаритные размеры – 590х490х315 мм;
- Габаритные размеры внешнего блока ТЭНов – 490х460х310 мм;
- Вес контроллера – 43,0 кг;
- Вес блока внешних ТЭНов – 17,0 кг.
Источник