- Лопасти для ветрогенератора из ПВХ трубы
- Что представляет собой ветрогенератор?
- Как определить мощность ВЭУ?
- Технологические особенности сборки ВЭУ
- Разметка ПВХ трубы
- Как разметить заготовку?
- Порезка ПВХ трубы
- Особенности сборки деталей
- Как это сделать?
- Балансировка колеса
- Как совершают балансировку?
- Выводы
- Ветряк своими руками или как получить свет с помощью ветра
- Последняя версия таблицы расчетов лопастей из ПВХ трубы.
- Какую форму лопастей выбрать для ветрогенератора.
- Виды ветрогенераторов
- Вертикальные
- Горизонтальные
- Как определить количество лопастей для ветрогенератора.
- О безопасности
- Снова КИЭВ
- Современность
- Как сделать лопасти для ветрогенератора из ПВХ трубы.
- Как работает простой ветрогенератор?
- Принцип работы ветрогенераторов
- Какая форма лопасти является оптимальной?
- Ветер, аэродинамика, КИЭВ
- Ветер и КИЭВ
- Аэродинамика
- Современность
- Выбор вида
- Расчет лопастей
- Чертежи лопастей
- Материал для изготовления
- Стекловолокно
- Создание лопастей поэтапно
- Самодельный ветрогенератор
- Ветряные электростанции
- Домашний ветрогенератор
- Создание лопастей поэтапно
- Лопасти из ПВХ-трубы
- Алюминиевые лопасти
- Лопасти из стекловолокна
- Из чего делают лопасти в домашних условиях
- Канализационные трубы из поливинилхлорида
- Алюминий — тонкий, легкий и дорогой
- Стекловолокно или стеклоткань — для профессионалов
- Дешево и сердито: деревянная деталь для ветроколеса
Лопасти для ветрогенератора из ПВХ трубы
Ветрогенератор (ВЭУ) – приспособление, с помощью которого можно преобразовать кинетическую энергию ветра в электричество. Подобное устройство используют в качестве альтернативного источника электроэнергии. В статье мы разберемся с конструктивными особенностями ВЭУ, а также технологией сборки лопастей ветряка из ПВХ трубы.
Что представляет собой ветрогенератор?
Ветрогенератор представляет собой турбину с закрепленным на ней ветряным колесом и флюгером. Конструкция крепится на крышах домов при помощи специальной мачты или металлического штатива. Достаточно простое устройство позволяет трансформировать естественную энергию ветра в электричество.
Чтобы сделать свою мини электростанцию с неплохим показателем КПД, нужно правильно рассчитать мощность ВЭУ. Данный параметр во многом определяется размером лопастей, от которых зависит сопротивляемость конструкции воздушным массам и, как следствие, количество вырабатываемой электроэнергии.
Как определить мощность ВЭУ?
Мощность ветряка напрямую зависит от количества лопастей в устройстве, их размеров и диаметра ветряного колеса. Данная зависимость продемонстрирована в таблице ниже, благодаря которой можно определить линейные параметры составляющих ветряка и производимой ими потребной мощности.
Оптимальным вариантом конструкции для самостоятельной сборки лопастей из ПВХ трубы станет ветряк парусного типа. Однако следует учесть, что при вращении лопастей и самого ветряного колеса не будут задействованы законы аэродинамики. Иными словами, импульсом для вращения мобильных частей устройства станет только давление воздушных масс. КПД парусного ВЭУ составит только 10-12% от ветровой энергии, которая воздействовала на конструкцию.
Более удачным вариантом ветряка с большим коэффициентом полезного действия станет ВЭУ крыльчатого типа. Лопасти устройства имеют неодинаковую площадь, за счет этого создается разница давления воздушных масс, действующих на крылья с обеих сторон. Таким образом, при вращении мобильных частей ветряка удается задействовать аэродинамическую силу. Благодаря этому КПД ветрогенератора возрастает на 30-40%.
Технологические особенности сборки ВЭУ
Из чего сделать лопасти для ветряка? Для изготовления лопастей проще всего использовать пластиковые трубы. Они достаточно просты в обработке и способны выдерживать немалые динамические нагрузки. Но для того, чтобы ветряк в процессе эксплуатации не разлетелся на куски, желательно учесть несколько важных нюансов:
- Толщину трубы. В процессе вращения несущие детали устройства испытывают большую нагрузку из-за влияния центробежной силы. Чтобы ее уменьшить желательно взять в качестве материала канализационную или газопроводную трубу с большей толщиной стенки – не менее 4 мм;
- Длину лопастей. Чем длиннее лопасть, тем большую нагрузку она испытывает. Чтобы продлить срок службы конструкции, не делайте крылья слишком длинными. Наиболее приемлемым вариантом станет крыло с длиной от 30 до 50 см;
- Количество лопастей. От количества крыльев напрямую зависит сопротивляемость ветряка воздушным массам. Чтобы увеличить его КПД, число крыльев стоит увеличить. Оптимальным вариантом станет ВЭУ с 5 или 6 крыльями.
Разметка ПВХ трубы
В качестве примера рассмотрим процесс маркировки крыльев для ВЭУ из трубы с диаметром в 10 см и толщиной стенки – 5 мм.
Генератор вертикального типа
Как разметить заготовку?
1. Чтобы правильно разметить цилиндрическую поверхность, оберните трубу листом бумаги;
2. Кромка листа станет ориентиром для формирования оси на трубе;
3. Ширина листа укажет на длину окружности;
4. Теперь сложите листок пополам, чтобы отметить половину от окружности заготовки;
5. Сложите листок четыре раза, чтобы отметить на цилиндре 4 линии для предполагаемых разрезов.
Порезка ПВХ трубы
Как разрезать ПВХ трубу? Для того, чтобы порезать заготовку лучше всего использовать электролобзик с пилкой по металлу. Порезка трубы на составные части делается следующим образом:
1. Сначала размеченную заготовку разрезают на две равные части;
2. Теперь половинки трубы также нужно разрезать пополам;
3. У основания каждой из лопастей делают прямоугольные надрезы длиной не более 5-6 см;
4. Чтобы не разрушить структурную целостность материала, в углах крыльев нужно просверлить небольшие отверстия;
5. После этого заготовленные части следует разрезать по диагонали;
6. Таким образом, у вас получатся лопасти конусного типа.
Особенности сборки деталей
На завершающем этапе конструирования ветрогенератора нужно соединить крылья с ветряным колесом и турбиной.
Как это сделать?
- Необходимо изготовить соединительный узел. Деталь представляет собой стальной диск с шестью металлическими лентами;
- Форма узла определяется конфигурацией самого генератора, выполняющий роль преобразователя кинетической энергии ветра в электрическую;
- Чтобы лопасти ветрогенератора не сломались и не деформировались под давлением воздушных масс, толщина стальных лент и диска должна варьироваться в пределах от 2 до 6 мм.
Балансировка колеса
После сборки ветряка необходимо осуществить балансировку ветряного колеса. Чтобы результаты были максимально достоверными, юстировать устройство стоит в закрытом помещении.
Как совершают балансировку?
1. Ветряное колесо подвешивается таким образом, чтобы его вращению ничего не препятствовало;
2. В процессе балансировки нужно следить за тем, чтобы плоскость соединительного диска была вертикальна по отношению к подвесу;
3. Теперь следует повернуть колесо на угол, который равен 360/N, где N – количество лопастей в конструкции;
4. Процедуру повторяем до полного поворота диска вокруг собственной оси;
5. Если после остановки диск приходит в движение, значит, лопасти, стремящиеся вниз, тяжелее остальных.
Выводы
Конструирование лопастей для бытового ветрогенератора – непростое, однако посильное для народных умельцев занятие. С соблюдением технологических нюансов, которые были приведены в статье, вам непременно удастся собрать ветряк с хорошим КПД.
Источник
Ветряк своими руками или как получить свет с помощью ветра
Расчеты самодельных лопастей из канализационных труб, ниже на фото показано как правильно обрабатывать кромки лопастей.
Ниже даны таблицы по которым можно рассчитать винт под свой генератор.
Метод расчета лопастей, фото и таблица взяты с замечательного форума windpower-russia
Последняя версия таблицы расчетов лопастей из ПВХ трубы.
Все рассчитанные лопасти ниже на скриншотах имеют свой идентификатор в виде 3D1500Z5T160
где первая цифра отображает количество лопастей винта,
Лопасти для ветрогенератора своими руками, форма, размер, площадь и количество лопастей, фото, видео изготовления лопастей.
При самостоятельном изготовлении ветрогенератора, очень важно правильно подобрать форму, размер и количество лопастей, от этого зависит эффективность работы генератора.
Какую форму лопастей выбрать для ветрогенератора.
Для ветрогенераторов с горизонтальным размещением ротора можно использовать два типа лопастей с формой паруса и формой крыла.
Парусный тип лопастей (по форме напоминает ветряную мельницу) из-за своей прямой формы имеет большое аэродинамическое сопротивление, что делает его менее эффективным и довольно шумным в работе.
Наиболее удачной формой лопастей считается форма крыла (по форме лопасть напоминает крыло самолёта), такой тип лопасти имеет гораздо меньшее аэродинамическое сопротивление, больший КПД и издаёт меньше шума при работе.
Поэтому для ветрогенератора с горизонтальным ротором рекомендуется устанавливать лопасти в форме крыла.
Виды ветрогенераторов
Они классифицируются по особенностям технического исполнения, что сказывается на функционале и возможностях.
Вертикальные
В зависимости от того, какой тип ротора и лопастей используется, вертикальные ветрогенераторы могут быть ортогональными, подвида савониуса, многолопастными (здесь присутствует направляющий механизм), дарье, геликойдными. Главным преимуществом устройств является тот факт, что их не нужно корректировать относительно ветра, они хорошо работают при любом его направлении. Поэтому они не оснащаются устройствами, улавливающими воздушные потоки.
Благодаря простоте агрегаты можно размещать на земле, по сравнению с горизонтальными вариантами, изготовить своими руками лопасти для такого ветрогенератора будет гораздо проще. Минусом является невысокая производительность вертикальных моделей, сфера применения ограничена из-за их недостаточного КПД.
Горизонтальные
Здесь варьируется количество лопастей. Самую высокую скорость проявляют однолопастные экземпляры, если сравнивать с трехлопастными, при идентичной силе ветра они крутятся примерно в 2 раза быстрее. КПД горизонтальных моделей существенно превышает производительность вертикальных.
Ветрогенераторы с горизонтальной осью
Горизонтально-осевая ориентация имеет уязвимость – ее работоспособность привязана к направлению ветра, поэтому устройство оснащается дополнительными механизмами, улавливающими движение воздушных потоков.
Как определить количество лопастей для ветрогенератора.
Прежде всего, нужно определиться с количеством лопастей. На быстроходные, ветрогенераторы устанавливается минимальное количество лопастей 2 – 3, это позволяет максимально раскручивать ротор генератора, но устанавливать быстроходные генераторы можно только в районах с постоянными ветрами, например на берегу моря.
В условиях средней полосы страны преобладают слабые ветра, и если установить быстроходный ветряк, то он будет малоэффективным.
2 — 3 лопастный ветряк будет хорошо раскручиваться при сильном ветре, а при слабом он будет просто стоять.
На ветрогенераторы с 2 – 3 лопастями очень сильно идёт нагрузка от воздействия центробежной силы, такие ветряки способны раскручивать лопасти до скорости полёта пули, если лопасть сломается, то может отлететь и нанести травму человеку.
К тому же 3 лопастные ветряки очень сильно шумят, их не рекомендуется устанавливать возле жилых домов, при сильных порывах ветра такой ветрогенератор издаёт звук пролетающего вертолёта.
В средней полосе страны, где преобладают слабые и средние ветра практичней устанавливать низко оборотистые ветрогенераторы. Для таких генераторов оптимально использовать 5 – 6 лопастей в форме крыла. Такое количество лопастей позволяет ветряку ловить слабый поток ветра и стабильно работать на низких оборотах.
О безопасности
Детали ветродвигателя бытового назначения в работе могут иметь линейную скорость, превосходящую 120 и даже 150 м/с, а кусочек любого твердого материала весом в 20 г, летящий со скоростью 100 м/с, при «удачном» попадании убивает здорового мужика наповал. Стальная, или из жесткого пластика, пластина толщиной 2 мм, движущаяся со скоростью 20 м/с, рассекает его же напополам.
Кроме того, большинство ветряков мощностью более 100 Вт довольно сильно шумят. Многие порождают колебания давления воздуха сверхнизкой (менее 16 Гц) частоты – инфразвуки. Инфразвуки неслышимы, но губительны для здоровья, а распространяются очень далеко.
В силу указанных выше причин установка ВСУ допускается на расстоянии не менее 5 их высот от ближайших жилых строений. Во дворах частных домовладений можно устанавливать ветряки промышленного изготовления, соответствующим образом сертифицированные. На крышах ставить ВСУ вообще нельзя – при их работе, даже у маломощных, возникают знакопеременные механические нагрузки, способные вызвать резонанс строительной конструкции и ее разрушение.
Идея Жуковского была такова: вдоль верхней и нижней поверхностей крыла воздух проходит разный путь. Из условия непрерывности среды (пузыри вакуума сами по себе в воздухе не образуются) следует, что скорости верхнего и нижнего потоков, сходящих с задней кромки, должны отличаться. Вследствие пусть малой, но конечной вязкости воздуха там из-за разности скоростей должен образоваться вихрь.
Вихрь вращается, а закон сохранения количества движения, столь же непреложный, как и закон сохранения энергии, справедлив и для векторных величин, т.е. должен учитывать и направление движения. Поэтому тут же, на задней кромке, должен сформироваться противоположно вращающийся вихрь с таким же вращательным моментом. За счет чего? За счет энергии, вырабатываемой двигателем.
Для практики авиации это означало революцию: выбрав соответствующий профиль крыла, можно было присоединенный вихрь пустить вокруг крыла в виде циркуляции Г, увеличивающей его подъемную силу. Т.е., затратив часть, а для больших скоростей и нагрузок на крыло – большую часть, мощности мотора, можно создать вокруг аппарата воздушный поток, позволяющий добиться лучших летных качеств.
Это делало авиацию авиацией, а не частью воздухоплавания: теперь летательный аппарат мог сам создавать себе нужную для полета среду и не быть более игрушкой воздушных потоков. Нужен только двигатель помощнее, и еще и еще мощнее…
Снова КИЭВ
Но у ветряка мотора нет. Он, наоборот, должен отбирать энергию у ветра и давать ее потребителям. И здесь выходит – ноги вытащил, хвост увяз. Пустили слишком мало энергии ветра на собственную циркуляцию ротора – она будет слабой, тяга лопастей – малой, а КИЭВ и мощность – низкими. Отдадим на циркуляцию много – ротор при слабом ветре будет на холостом ходу крутиться как бешеный, но потребителям опять достается мало: чуть дали нагрузку, ротор затормозился, ветер сдул циркуляцию, и ротор стал.
Читать далее: Как закрыть батарею гипсокартоном своими руками фото
Закон сохранения энергии «золотую середину» дает как раз посерединке: 50% энергии даем в нагрузку, а на остальные 50% подкручиваем поток до оптимума. Практика подтверждает предположения: если КПД хорошего тянущего пропеллера составляет 75-80%, то КИЭВ так же тщательно рассчитанного и продутого в аэродинамической трубе лопастного ротора доходит до 38-40%, т.е. до половины от того, чего можно добиться при избытке энергии.
Современность
Ныне аэродинамика, вооруженная современной математикой и компьютерами, все более уходит от неизбежно что-то да упрощающих моделей к точному описанию поведения реального тела в реальном потоке. И тут, кроме генеральной линии – мощность, мощность, и еще раз мощность! – обнаруживаются пути побочные, но многообещающие как раз при ограниченном количестве поступающей в систему энергии.
Известный авиатор-альтернативщик Пол Маккриди еще в 80-х создал самолет, с двумя моторчиками от бензопилы мощностью в 16 л.с. показавший 360 км/ч. Причем шасси его было трехопорным неубирающимся, а колеса – без обтекателей. Ни один из аппаратов Маккриди не вышел на линию и не встал на боевое дежурство, но два – один с поршневыми моторами и пропеллерами, а другой реактивный – впервые в истории облетели вокруг земного шара без посадки на одной заправке.
Парусная яхта на подводных крыльях
Парусов, породивших изначальное крыло, развитие теории тоже коснулось весьма существенно. «Живая» аэродинамика позволила яхтам при ветре в 8 узл. встать на подводные крылья (см. рис.); чтобы разогнать такую громадину до нужной скорости гребным винтом, требуется двигатель не менее 100 л.с. Гоночные катамараны при таком же ветре ходят со скоростью около 30 узл. (55 км/ч).
Есть и находки совершенно нетривиальные. Любители самого редкого и экстемального спорта – бейсджампинга – надев апециальный костюм-крыло, вингсьют, летают без мотора, маневрируя, на скорости более 200 км/ч (рис. справа), а затем плавно приземляются в заранее выбранном месте. В какой сказке люди летают сами по себе?
Бейсджампер в видгсьюте
Разрешились и многие загадки природы; в частности – полет жука. По классической аэродинамике, он летать не способен. Точно так же, как и родоначальник «стелсов» F-117 с его крылом ромбовидного профиля тоже не способен подняться в воздух. А МИГ-29 и Су-27, которые некоторое время могут лететь хвостом вперед, и вовсе ни в какие представления не укладываются.
И почему тогда, занимаясь ветродвигателями, не забавой и не орудием уничтожения себе подобных, а источником жизненно важного ресурса, нужно плясать непременно от теории слабых потоков с ее моделью плоского ветра? Неужели не найдется возможности продвинуться дальше?
Как сделать лопасти для ветрогенератора из ПВХ трубы.
Для ветрогенератора можно изготовить лопасти из пластиковой трубы. Для этого рекомендуется использовать ПВХ трубу для напорного трубопровода диаметром 160 мм, обычные трубы для безнапорной канализации использовать нельзя, при сильном ветре они сломаются.
На трубе рисуем маркером контур шаблона лопасти.
Вырезаем заготовку пилой или электро-лобзиком.
Заготовки обрабатываем шлифовальной машинкой, сглаживаем углы и края лопастей.
Лопасти из ПВХ трубы отлично подходят для небольших самодельных ветрогенераторов с диаметром ветроколеса не более 2 метров.
Существующие цены на ветрогенераторы и окупаемость не соответствуют возможностям большинства владельцев загородных домов, дачных участков. Жителям отдаленных районов, где сетевой электроэнергии до сих пор никогда не было, приобрести подобное оборудование еще сложнее, поскольку они лишены информации о нем и не могут получить достаточно подробные сведения о качестве, характеристиках и прочих параметрах оборудования для использования энергии ветра.
Приходится изготавливать ветровые устройства самостоятельно, опираясь на экспериментальные результаты или отрывочные сведения, почерпнутые из разных источников. Рассмотрим важный вопрос, возникающий при создании ветряка — устройство лопастей.
Как работает простой ветрогенератор?
Существует два типа ветрогенераторов:
Разница состоит в расположении оси вращения. Наиболее производительными считаются горизонтальные конструкции, напоминающие своими формами самолет с пропеллером. Винт — это крыльчатка ветряка, хвост — устройство наведения на поток ветра, автоматически разворачивающее ось по направлению движения воздуха.
При воздействии ветра на крыльчатку возникает вращающий момент, передающийся на ось генератора. В его обмотках возбуждается электроток, который заряжает аккумуляторные батареи. Они, в свою очередь, отдают заряд на инвертор, изменяющий параметры тока и выдающий на потребляющие приборы стандартное напряжение 220 В 50 Гц.
Существуют более простые комплексы, где с генератора запитываются сразу потребители, но такая система никак не защищена от скачков или пропадания напряжения. Вариант используется только для освещения или привода насосов, качающих воду.
Принцип работы ветрогенераторов
Принцип работы во всех модификациях ветряков одинаков. В процессе вращения лопастей образуется три вида физического воздействия: подъемная, импульсная и тормозящая силы. В результате воздействия этих сил статор приходит в движение, а ротор на неподвижной части генератора начинает создавать магнитное поле и электрический ток движется по проводам.
Вариантов исполнения ветрогенераторов большое количество, отличаются они не только мощностью, но и своим внешним видом. Структура большинства ветряков включает в себя: генератор, лопасти, инвертор, мультипликатор. Инвертор используется для преобразования полученного заряда в постоянный ток. Мультипликатор — это редуктор, который предназначен для увеличения числа оборотов вала. Устанавливают редукторы не на все ветряки, в основном только на большие и мощные ветровые установки.
Трехфазный переменный ток образуется благодаря вращению ротора. Полученная энергия направляется через контроллер к аккумуляторной батарее. Далее инвертор преобразовывает ток и делает его стабильным, именно в таком виде его можно подавать для питания бытовых приборов или освещения.
Какая форма лопасти является оптимальной?
Основной элемент горизонтального ветряка — крыльчатка. Она больше всего напоминает пропеллер, хотя выполняет абсолютно противоположные функции. Лопасти принимают на себя энергию воздушного потока, перерабатывая ее во вращательное движение. От их конфигурации напрямую зависит эффективность работы крыльчатки и всего комплекта в целом.
Горизонтальные устройства имеют крыльчатки, снабженные большим количеством лопастей. Обычно их больше 3. В этом вопросе существует зависимость числа лопастей от производительности. Дело в том, что с возрастанием числа принимающих плоскостей падает мощность крыльчатки, а с убыванием — чувствительность. Поэтому выбирают «золотую середину», принимая среднее число лопастей.
Важно! Большое число лопастей увеличивает фронтальную нагрузку на устройство, создавая опрокидывающее усилие на основании мачты и сильное осевое давление на крыльчатку, разрушающее подшипники генератора.
На практике создано большое количество разных устройств, имеющих форму крыльчатки от простых секторов окружности, немного развернутых по радиусной оси, до сложных вариантов с тщательно просчитанной аэродинамикой, испытанных в разных условиях. Результаты испытаний показали, что оптимальной формой является модель, приближенная к пропеллеру. Такая лопасть несколько расширяется от центра (обтекателя) крыльчатки и плавно сужается к концу.
Преимуществом этого вида является равномерное распределение нагрузок на опорный подшипник, поверхность лопасти и всю систему ветряка в целом. Поток ветра воздействует на все участки с одинаковой силой, но, если расширить лопасть к концу, то получится достаточно длинный рычаг, перегружающий подшипник и выламывающий лопасти. Отсюда возникла такая форма, с небольшими изменениями используемая практически на всех ветряках.
Ветер, аэродинамика, КИЭВ
Самодельный ветрогенератор подчиняется тем же законам природы, что и заводской, рассчитанный на компьютере. И самодельщику основы его работы нужно понимать очень хорошо – в его распоряжении чаще всего нет дорогих суперсовременных материалов и технологического оборудования. Аэродинамика же ВСУ ох как непроста…
Ветер и КИЭВ
Для расчета серийных заводских ВСУ используется т. наз. плоская механистическая модель ветра. В ее основе следующие предположения:
- Скорость и направление ветра постоянны в пределах эффективной поверхности ротора.
- Воздух – сплошная среда.
- Эффективная поверхность ротора равна ометаемой площади.
- Энергия воздушного потока – чисто кинетическая.
При таких условиях максимальную энергию единицы объема воздуха вычисляют по школьной формуле, полагая плотность воздуха при нормальных условиях 1,29 кг*куб. м. При скорости ветра 10 м/с один куб воздуха несет в себе 65 Дж, и с одного квадрата эффективной поверхности ротора можно, при 100% КПД всей ВСУ, снять 650 Вт.
Плоскую модель игнорировать не следует, она дает четкий минимум доступной энергии ветра. Но воздух, во-первых, сжимаем, во-вторых, очень текуч (динамическая вязкость всего 17,2 мкПа*с). Это значит, поток может обтекать ометаемую площадь, уменьшая эффективную поверхность и КИЭВ, что чаще всего и наблюдается.
Приведем два примера. Первый – прогулочная, довольно тяжеловесная, яхта может идти не только против ветра, но и быстрее его. Ветер имеется в виду внешний; вымпельный ветер все равно должен быть быстрее, иначе как он судно потянет?
Второй – классика авиационной истории. На испытаниях МИГ-19 оказалось, что перехватчик, который был на тонну тяжелее фронтового истребителя, по скорости разгоняется быстрее. С теми же движками в том же планере.
Теоретики не знали, что и думать, и всерьез засомневались в законе сохранения энергии. В конце концов оказалось – дело в выступающем из воздухозаборника конусе обтекателя РЛС. От его носка к обечайке возникало уплотнение воздуха, как бы сгребавшее его со сторон к компрессорам двигателей. С тех пор ударные волны прочно вошли в теорию как полезные, и фантастические летные данные современных самолетов в немалой степени обусловлены их умелым использованием.
Аэродинамика
Развитие аэродинамики принято делить на две эпохи – до Н. Г. Жуковского и после. Его доклад «О присоединенных вихрях» от 15 ноября 1905 г. стал началом новой эры в авиации.
До Жуковского летали на поставленных плашмя парусах: полагалось, что частицы набегающего потока отдают весь свой импульс передней кромке крыла. Это позволяло сразу избавиться от векторной величины – момента количества движения – порождавшей зубодробительную и чаще всего неаналитическую математику, перейти к куда более удобным скалярным чисто энергетическим соотношениям, и получить в итоге расчетное поле давления на несущую плоскость, более-менее похожее на настоящее.
Читать далее: Установка сифона на ванну как собрать и установить устройство
Такой механистический подход позволил создать аппараты, способные худо-бедно подняться в воздух и совершить перелет из одного места в другое, не обязательно грохнувшись на землю где-то по пути. Но стремление увеличить скорость, грузоподъемность и другие летные качества все больше выявляло несовершенство первоначальной аэродинамической теории.
Современность
Выбор вида
Вариантов или видов лопастей для горизонтальных ветряков существует немного. Причина этого кроется в самой конструкции крыльчатки — создавать сложные формы или конфигурации там попросту негде. Тем не менее, разработки наиболее удачного варианта ведутся постоянно, на сегодня можно выделить несколько видов:
Твердые лопасти изготавливаются из различных материалов сразу в определенной форме, парусные имеют совершенно другую конструкцию. Основой является рамка, на которую натягивается плотное полотно таким образом, чтобы одна из сторон была не прикреплена к рамке. Получается лопасть треугольной формы с одной стороной (от центра к одной из вершин), не закрепленной к основе.
Поток ветра создает давление на парус и придает ему оптимальную форму для схода с плоскости, в результате чего колесо начинает вращаться. Вариант имеет преимущество в массе и весе колеса, но нуждается в постоянном наблюдении за состоянием ткани и крыльчатки в целом.
Для самостоятельного изготовления обычно используют подручные материалы. Учитывая сложный профиль лопастей, хорошим вариантом становится использование листового металла или пластиковых труб.
Расчет лопастей
На практике мало кто вычисляет параметры лопастей, поскольку для этого надо обладать специальной подготовкой и располагать данными. Большинство значений, нужных для расчетов, необходимо сначала отыскать, некоторые из них и вовсе будут известны только после запуска ветряка. Кроме того, для большинства видов до сих пор нет математической модели вращения, что делает расчеты бесполезными.
Чаще всего производится подбор диаметра крыльчатки по требующейся мощности, выполняемый по таблице:
Как вариант, можно использовать онлайн-калькулятор, позволяющий получить готовый результат за секунды, надо только подставить в окошечки программы собственные данные.
Необходимо учитывать, что расчеты такого устройства, как крыльчатка, не будут иметь достаточной точности из-за большого количества тонких эффектов и неизвестных величин, поэтому, чаще всего, прибегают к экспериментальному подбору формы и размера.
Чертежи лопастей
Чертеж лопасти ветрогенератора можно без труда найти на всевозможных форумах по интересу. Один из вариантов представлен вашему вниманию на фото выше. Разумеется, следует использовать его лишь как пример, подставив необходимые значения длины и ширины вращающихся элементов системы генератора.
Существует большое количество различных чертежей и схем, которые можно взять за образец при проектировании лопастей для собственной ветряной машины.
Однако каким бы рисунком ни пользовался находчивый хозяин дома, главными критерием остается длина лопасти ветрогенератора, так как от него зависит работоспособность и КПД будущего устройства.
Материал для изготовления
Прежде, чем начать работы по созданию крыльчатки, надо определиться с материалом. Выбор производится из того, что имеется в наличии, или из материалов, более знакомых пользователю и доступных для обработки. Требования к материалу для изготовления лопастей:
- прочность
- малый вес
- легкость обработки
- возможность придания нужной формы или наличие ее у заготовки
- доступность
Из всех возможных вариантов опытным путем были выделены несколько наиболее удачных. Рассмотрим их подробнее.
Использование канализационных труб ПВХ большого диаметра позволяет быстро и недорого получить вполне качественные лопасти. Пластик не боится воздействия влаги, легко обрабатывается. Самым ценным качеством является наличие у заготовки формы ровного желоба, остается лишь правильно отрезать все лишнее.
Простота изготовления и дешевизна материала в сочетании с эксплуатационными качествами пластика сделали трубы ПВХ самым ходовым материалом при изготовлении самодельных ветряков. К недостаткам материала можно отнести его хрупкость при низких температурах.
Лопасти из алюминия долговечны, прочны и не боятся никаких внешних воздействий. При этом, они тяжелее, чем пластиковые и требуют тщательной балансировки колеса. Кроме того, работа с металлом, даже таким податливым, как алюминий, требует наличия навыков и подходящего инструмента.
Затрудняет работу и форма материала — чаще всего используется листовой алюминий, поэтому мало изготовить лопасти, надо придать им соответствующий профиль, для чего придется сделать специальный шаблон. Как вариант, можно сначала изогнуть лист по оправке, затем приступить к разметке и резке деталей. В целом, материал более устойчив к нагрузкам, не боится температурных или погодных воздействий.
Стекловолокно
Такой выбор — для специалистов. Работа со стекловолокном сложна, требует навыков и знания множества тонкостей. Порядок создания лопасти включает в себя несколько операций:
- изготовление деревянного шаблона, покрытие его поверхности воском, мастикой или иным материалом, отталкивающим клей
- изготовление одной половины лопасти. На поверхность шаблона наносится слой эпоксидки, на который тут же укладывается стеклоткань. Затем снова наносится эпоксидка (не дожидаясь засыхания предыдущего слоя) и опять стеклоткань. Таким образом создается одна половина лопасти нужной толщины
- подобным образом изготавливается вторая половина лопасти
- после застывания клея половинки соединяются при помощи эпоксидки. Стыки зашлифовываются, в торец вставляется втулка для присоединения к ступице
Технология сложна, требует времени и умения работать с материалами. Кроме того, эпоксидная смола имеет неприятное свойство закипать в больших объемах, что создает постоянную угрозу испортить всю работу. Поэтому выбирать стеклоткань следует только опытным и подготовленным пользователям.
Работа с деревом достаточно хорошо знакома для большинства пользователей, но создание лопастей — задача достаточно сложная. Мало того, что форма изделия сама по себе непроста, так еще и потребуется изготовить несколько одинаковых неотличимых друг от друга образцов.
Решение такой задачи по плечу далеко не всем. Кроме того, готовые изделия надо качественно защитить от воздействия влаги, пропитать олифой или маслом, покрасить и т.д.
Древесина обладает массой отрицательных качеств — она склонна к короблению, растрескиванию, гниению. Впитывает и легко отдает влагу, что изменяет массу и баланс крыльчатки. Все эти свойства делают материал не лучшим вариантом выбора для домашнего мастера, поскольку лишние осложнения никому не нужны.
Создание лопастей поэтапно
Рассмотрим наиболее распространенный вариант изготовления лопастей. В качестве материала используется труба ПВХ диаметром порядка 110-160 мм:
- отрезаются куски трубы по длине лопастей
- вдоль отрезка наносится линия, от которой в обе стороны отмеряются 22 мм. Получится 44 мм — ширина одной лопасти
- с противоположного торца делается то же самое
- крайние точки с одной стороны центральной линии соединяются по прямой. Со второй стороны наносится рисунок формы лопасти
- вырезается лопасть, свободный конец аккуратно закругляется, кромки обрабатываются наждачной бумагой или напильником
- лопасти присоединяются к ступице
Форма лопастей имеет следующее строение:
- торцевые части одинаковы по ширине — 44 мм
- посередине ширина лопасти составляет 55 мм
- на расстоянии 0,15 длины ширина лопасти составляет 88 мм
Полученные точки соединяются прямой линией, затем оформляются более плавными переходами, руководствуясь полученными очертаниями. Изготавливается шаблон, по которому вырезаются все лопасти, имеющие одинаковую форму. Для присоединения к ступице необходимо просверлить пару отверстий под винты (шурупы).
Они должны на всех лопастях находиться в одинаковых точках, чтобы не нарушался баланс крыльчатки. Готовое колесо требуется тщательно отбалансировать, установив его на ось и, свободно вращая, отыскать участок с нарушениями баланса. В этом месте следует понемногу стачивать лопасть до момента полного уравновешивания крыльчатки.
Домашние ветряные электростанции – независимый альтернативный способ получения электроэнергии.
Установка такого оборудования позволяет существенно снизить траты на электричество при условии, что в местности присутствуют ветра хотя бы от 4 м/с.
А чем выше скорость ветра, тем большее количество энергии вырабатывается устройством.
В этой статье будет рассмотрен пошаговый план изготовления лопастей ветрогенератора своими руками.
Самодельный ветрогенератор
Ветрогенератор, изготовленный своими руками, имеет ряд преимуществ. В отличие от приобретенного устройства, в качестве собственноручно созданной машины можно не сомневаться. Также домашний ветрогенератор всегда изготавливается под нужды и потребности конкретного дома.
Сделать ветрогенератор для дачного участка своими руками весьма просто, тем более что готовый двигатель можно без труда приобрести практически в любом техническом магазине или заказать в интернете. Большая часть времени уйдет на изготовление лопастей ветрогенератора.
Ветряные электростанции
Существует множество вариантов конструкции ветрогенераторов, для классификации которых есть базовые признаки:
- расположение вращательной оси: вертикальное и горизонтальное;
- количество лопастей: чаще от 1 до 6, но бывают варианты и с большим количеством;
- тип вращательной лопасти: в виде крыла или паруса;
- материал для изготовления лопасти: дерево, алюминий, ПВХ;
- конструкция винтового колеса: с фиксированным или переменным шагом.
Продуктивность работы ветрогенератора в большей степени зависит от лопастей: от того, насколько правильно рассчитаны их размеры и количество, и удачно ли подобран материал для изготовления.
Сделать лопасти своими руками не составит труда, но перед тем, как начать работу, нужно изучить некоторые факты:
- Чем длиннее лопасти, тем легче они поддаются движению ветра, даже самого слабого. Однако большая длина будет замедлять скорость вращения ветряного колеса.
- На чуткость ветряного колеса влияет и количество лопастей: чем их больше, тем проще будет запускаться вращение. При этом показатели мощности и скорости будут снижаться, а значит, такое устройство непригодно для выработки электроэнергии, но отлично подойдет для подъемных работ.
- От диаметра и скорости вращения ветряного колеса зависит уровень шума, исходящего от устройства. Это нужно учитывать при установке ветрогенератора вблизи жилых домов.
- Большее количество энергии от ветра можно получить, установив ветряк как можно выше над уровнем земли (оптимально от 6 до 15 м). Поэтому зачастую установка происходит на крыше здания или на высокой мачте.
Готовые лопасти для ветрогенератора
Инструкцию по изготовлению коптильни из бочки содержит следующая наша статья.
Домашний ветрогенератор
Домашний ветрогенератор может быть изготовлен как в целях реального обеспечения жилья электроэнергией, так и для приобретения познавательно-практического опыта. В любом случае это будет полезная поделка, которую можно использовать, например, для подзарядки электронного гаджета или бытового прибора.
Домашние ветрогенераторы отличаются от промышленных существенно меньшим размером и способностью производить сравнительно небольшое количество электрической энергии.
Обычно подобные агрегаты устанавливаются на заднем дворе и подсоединяются к системе обеспечения жилого помещения электроэнергией. Такой способ получения электрической энергии абсолютно не требует финансовых затрат, и уж тем более, с легкостью окупает средства, затраченные на его изготовление.
Создание лопастей поэтапно
При самостоятельном проектировании лопастей необходимо учитывать следующее:
- Для начала нужно определиться с формой лопасти. Для домашнего горизонтального ветрогенератора более удачной считается форма крыла. Благодаря своему строению она имеет меньшее аэродинамическое сопротивление. Такой эффект создается за счет отличия площадей внешней и внутренней поверхностей элемента, и поэтому появляется разница давления воздуха на стороны. Форма паруса имеет большее сопротивление и поэтому менее эффективна.
Так выглядит сопротивление ветра с разными моделями лопастей
- Дальше нужно определиться с количеством лопастей. Для местности, в которой присутствуют постоянные ветра, можно использовать быстроходные ветрогенераторы. Таким устройствам достаточно 2-3 лопастей для максимальной раскрутки двигателя.При использовании такого устройства в безветренной местности оно будет неэффективным, и будет просто простаивать в спокойную погоду. Еще одним недостатком трехлопастных ветрогенераторов является высокий уровень шума, по звуку напоминающий вертолет. Такая установка не рекомендуется вблизи густо заселенных домов.
Для наших широт, со слабыми и средними ветрами, лучше подойдут пяти- и шестилопастные ветряки, что позволит им улавливать слабый поток ветра и поддерживать стабильную работу двигателя
- Расчет мощности ветряного устройства. Невозможно рассчитать точный показатель, поскольку мощность напрямую будет зависеть от погоды и движения ветра. Но существует прямая зависимость между диаметром ветряного колеса с количеством лопастей и мощностью оборудования.
Данные приведены для средней скорости ветра 4 м/с (для увеличения нажмите на картинку)
Разобравшись с данными в таблице и поняв взаимосвязь, можно с помощью создания правильного винтового колеса влиять на мощность будущей конструкции
- Выбор материала для создания лопастей. Выбор материалов для создания лопастей достаточно широк: ПВХ, стекловолокно, алюминий и др. Однако каждый из них имеет свои плюсы и минусы. Остановимся на выборе материала более подробно.
Лопасти для ветрогенератора из стеклопластика
Лопасти из ПВХ-трубы
При подборе правильного размера и толщины труб, полученное колесо будет обладать высокой прочностью и эффективностью. Следует учитывать, что при сильных порывах ветра, пластик недостаточной толщины может не выдержать нагрузку, и разлететься на мелкие кусочки.
Для того чтобы обезопасить конструкцию, лучше уменьшить длину лопастей и увеличить их количество до 6. Для получения такого количества деталей как раз хватит одной трубы.
Для создания лопасти нужно взять трубу с минимальной толщиной стенки 4 мм и диаметром 160 мм, и нанести с помощью готового шаблона и маркера разметку будущих элементов.
Для того чтобы не допустить ошибки при самостоятельных расчетах, лучше воспользоваться готовым шаблоном, который легко можно найти в интернете. Поскольку без специальных знаний в этом деле не обойтись.
После порезки трубы полученные элементы нужно зашлифовать и скруглить по краям. Чтобы соединить лопасти, изготавливается самодельный стальной узел, с достаточной толщиной и прочностью.
Алюминиевые лопасти
Такая лопасть прочнее и тяжелей, а значит, и вся конструкция, удерживающая винт, должна быть массивней и устойчивей. К последующей балансировке колеса тоже нужно отнестись с повышенным вниманием.
Чертеж стандартного алюминиевого элемента для шестилопастного колеса
По представленному шаблону из листа алюминия вырезается 6 одинаковых элементов, к внутренней стороне которых нужно приварить втулки с резьбой для дальнейшего крепления.
К соединительному узлу нужно приварить шпильки, которые будут соединяться с подготовленными на лопастях втулками.
Для того чтобы улучшить аэродинамические свойства такой лопасти, ей нужно придать правильную форму. Для этого ее нужно прокатать в неглубокий желоб так, чтобы между осью прокрутки и продольной осью заготовки образовался угол 10 градусов.
Лопасти из стекловолокна
Преимуществом этого материала является оптимальное соотношение массы и прочности, в сумме с аэродинамическими свойствами. Но работа со стеклотканью требует особого мастерства и большого профессионализма, поэтому в домашних условиях такое изделие создать сложно.
Лопасти из стекловолокна
Можно сделать вывод, что наиболее подходящий материал для самостоятельной сборки ветряного колеса – ПВХ-труба. Она сочетает в себе прочность, легкость и хорошие аэродинамические характеристики. Причем, это очень доступный материал, а с работой справится даже новичок.
Из этого видео Вы узнаете, как сделать лопасти для ветрогенератора своими руками:
Из чего делают лопасти в домашних условиях
Материалы, которые подойдут для строительства ветрогенератора – это, прежде всего, пластик, легкие металлы, древесина и современное решение – стеклоткань. Главный вопрос заключается в том, сколько труда и времени вы готовы потратить на изготовление ветряка.
Канализационные трубы из поливинилхлорида
Самый популярный и широко распространенный материал для изготовления пластиковых лопастей для ветрогенератора является обыкновенная канализационная ПВХ-труба. Для большинства домашних генераторов с диаметром винта до 2 м хватит трубы 160 мм.
К преимуществам такого метода относят:
- невысокую цену;
- доступность в любом регионе;
- простоту работы;
- большое количество схем и чертежей в интернете, большой опыт использования.
Трубы бывают разными. Это известно не только тем, кто изготавливает самодельные ветряные электростанции, но всем, кто сталкивался с монтажом канализации или водопровода. Они отличаются по толщине, составу, производителю. Труба стоит недорого, поэтому не нужно пытаться еще больше удешевить свой ветряк, экономя на ПВХ-трубах.
Некачественный материал пластиковых труб может привести к тому, что лопасти треснут при первом же испытании и вся работа будет проделана впустую
Сначала нужно определиться с лекалом. Вариантов существует много, каждая форма имеет свои недостатки и преимущества. Возможно, имеет смысл сначала поэкспериментировать, прежде чем вырезать итоговый вариант.
Поскольку цена на трубы невысокая, а найти их можно в любом строительном магазине, этот материал отлично подойдет для первых шагов в моделировании лопастей. Если что-то пойдет не так, всегда можно купить еще одну трубу и попробовать сначала, кошелек от таких экспериментов не сильно пострадает.
Опытные пользователи энергии ветра заметили, что для изготовления лопастей для ветрогенератора лучше использовать оранжевые, а не серые трубы. Они лучше держат форму, не изгибаются после формирования крыла и дольше служат
Конструкторы-любители предпочитают ПВХ, так как во время испытаний сломанную лопасть можно заменить на новую, изготовленную 15 минут прямо на месте при наличии подходящего лекала. Просто и быстро, а главное – доступно.
Алюминий — тонкий, легкий и дорогой
Алюминий – легкий и прочный металл. Его традиционно используют для изготовления лопастей для ветрогенераторов. Благодаря небольшому весу, если придать пластине нужную форму, аэродинамические свойства винта будут на высоте.
Основные нагрузки, которые испытывает ветряк во время вращения, направлены на изгиб и разрыв лопасти. Если пластик при такой работе быстро даст трещину и выйдет из строя, рассчитывать на алюминиевый винт можно гораздо дольше.
Однако если сравнивать алюминий и ПВХ-трубы, металлические пластины все равно будут тяжелее. При высокой скорости вращения велик риск повредить не саму лопасть, а винт в месте крепления
Еще один минус деталей из алюминия – сложность изготовления. Если ПВХ-труба имеет изгиб, который будет использован для придания аэродинамических свойств лопасти, то алюминий, как правило, берется в виде листа.
После вырезания детали по лекалу, что само по себе гораздо сложнее, чем работа с пластиком, полученную заготовку еще нужно будет прокатать и придать ей правильный изгиб. В домашних условиях и без инструмента сделать это будет не так просто.
Стекловолокно или стеклоткань — для профессионалов
Если вы решили подойти к вопросу создания лопасти осознанно и готовы потратить на это много сил и нервов, подойдет стекловолокно. Если ранее вы не имели дела с ветрогенераторами, начинать знакомство с моделирования ветряка из стеклоткани – не лучшая идея. Все-таки этот процесс требует опыта и практических навыков.
Лопасть из нескольких слоев стеклоткани, скрепленных эпоксидным клеем, будет прочной, легкой и надежной. При большой площади поверхности деталь получается полая и практически невесомая
Для изготовления берется стеклоткань – тонкий и прочный материал, который выпускается в рулонах. Помимо стекловолокна пригодится эпоксидный клей для закрепления слоев. Начинают работу с создания матрицы. Это такая заготовка, которая представляет собой форму для будущей детали.
Матрица может быть изготовлена из дерева: бруса, доски или бревна. Прямо из массива вырубают объемный силуэт половины лопасти. Еще вариант – форма из пластика
Сделать заготовку самостоятельно очень сложно, нужно иметь перед глазами готовую модель лопасти из дерева или другого материала, а только потом по этой модели вырезают матрицу для детали. Таких матриц нужно как минимум 2. Зато, сделав удачную форму однажды, ее можно применять многократно и соорудить таким образом не один ветряк.
Дно формы тщательно смазывают воском. Это делается для того, чтобы готовую лопасть можно было легко извлечь впоследствии. Укладывают слой стекловолокна, промазывают его эпоксидным клеем. Процесс повторяют несколько раз, пока заготовка не достигнет нужной толщины.
Затем клей должен высохнуть. Некоторые рекомендуют поместить форму в вакуумный пакет и откачать воздух. Так клей лучше проникает во все слои стеклоткани, не оставляя непропитанных участков
Когда эпоксидный клей высохнет, половину детали аккуратно вынимают из матрицы. То же делают со второй половиной. Части склеивают между собой, чтобы получилась полая объемная деталь. Легкая, прочная, правильной аэродинамической формы лопасть из стекловолокна – вершина мастерства домашнего любителя ветряных электростанций.
Ее главный минус – сложность реализации задумки и большое количество брака на первых порах, пока не будет получена идеальная матрица, а алгоритм создания не будет отточен.
Дешево и сердито: деревянная деталь для ветроколеса
Деревянная лопасть – дедовский метод, который легко осуществим, но малоэффективен при сегодняшнем уровне потребления электричества. Сделать деталь можно из цельной доски легких пород древесины, например, сосны. Важно подобрать хорошо высушенную деревянную заготовку.
Если дерево будет сырым, в процессе высыхания винт может «повести» и он деформируется. Да и вес влажного дерева существенно выше сухого
Нужно выбрать подходящую форму, но учитывать тот факт, что деревянная лопасть будет не тонкой пластиной, как алюминиевая или пластиковая, а объемной конструкцией. Поэтому придать заготовке форму мало, нужно понимать принципы аэродинамики и представлять себе очертания лопасти во всех трех измерениях.
Придавать окончательный вид дереву придется рубанком, лучше электро. Для долговечности древесину обрабатывают антисептическим защитным лаком или краской
Главный недостаток такой конструкции – большой вес винта. Чтобы сдвинуть с места эту махину, ветер должен быть достаточно сильным, что трудноосуществимо в принципе. Однако дерево – доступный материал. Доски, подходящие для создания винта ветрогенератора, можно найти прямо у себя во дворе, не потратив ни копейки. И это главное преимущество древесины в данном случае.
КПД деревянной лопасти стремится к нулю. Как правило, время и силы, которые уходят на создание такого ветряка не стоят полученного результата, выраженного в ваттах. Однако, как учебная модель или пробный экземпляр деревянная деталь вполне имеет место быть. А еще флюгер с деревянными лопастями эффектно смотрится на участке.
Источник