Ветрогенератор как зарядное устройство

Зарядное устройство от ветрогенератора «Турист»

В длительном туристском походе (пешем или велосипедном) не обойтись без освещения. Фонариков, которые подзаряжаются от электросети, надолго не хватает, а туристические маршруты проходят в основном в местах, где отсутствуют линии электропередач. Решить эту проблему поможет зарядное устройство «Турист».

Для этого необходимо вытащить из двух фонариков малогабаритные аккумуляторы типа Д-0.25 и вставить в зарядное устройство.

Зарядное устройство “Турист» (рис.1) состоит из велогенератора 5, который закреплен на шесте 4 и собственно зарядного устройства 6. Работу генератора обеспечивают четыре колпачка, закрепленные на перемычках 1, которые присоединены до насадки 2 и вращаются под действием ветра [1]. Колпачок можно изготовить из металлического кружка диаметром 94 мм, вырезанного из оцинкованного железа толщиной 0,5 мм. Часть кружка удаляем, а оставшуюся сгибаем конусом и пропаиваем концы заготовки по образующей. К каждому колпачку припаиваем или привариваем перемычки длиной 100-110 мм, изогнутые на концах. В качестве перемычек можно взять медный или металлический провод диаметром 4,4-6,0 мм, концы которого вставлены в четыре просверленные отверстия насадки под углом 90° относительно друг друга, и места крепления припаять или приварить электросваркой.

Внутренний диаметр насадки должен быть на 2-3 мм больше наружного диаметра ролика 7 велогенератора. Вырезав и обточив из полиэтиленовой водопроводной трубы соответствующего диаметра прокладку 8 длиной, равной внутреннему размеру колпачка, вставляем ее внутрь насадки и надеваем на ролик велогенератора. При постоянном использовании велогенератора на зарядном устройстве перемычки можно приварить непосредственно к ролику велогенератора. Насадку лучше выточить на токарном станке или, в крайнем случае, изготовить из металлической водопроводной трубы соответствующего диаметра, приварив сверху шайбу.
Велогенератор крепится на верху шеста с помощью собственного хомута. Здесь же крепится зарядное устройство и подсоединяется к велогенератору. Длина составного шеста 3 м (2×1,5 м), он крепится на открытой местности четырьмя растяжками, а при наличии деревьев — на верху дерева.

Читайте также:  Горизонтальный ветрогенератор для частного дома своими руками

Переменный ток велогенератора (рис.2) поступает на выпрямительный мост VD1…VD4 и далее на зарядку четырех элементов Д-0.25 [2]. Для сглаживания пульсаций установлен электролитический конденсатор С1 емкостью 100 мкФ х 16В. Выпрямительные диоды — любого типа на допустимый ток не менее 100 мА, например КД509, КД510, КД522.

Продолжительность зарядки аккумуляторов зависит от величины напряжения велогенератора, что в свою очередь определяется силой ветра. При слабом ветре рекомендуется заряжать только два аккумулятора Д-0.25. После зарядки их вставляют в фонарики, которые используют ночью по назначению.

Велотуристы могут приспособить зарядное устройство (сняв насадку с колпачками с ролика генератора) на своих велосипедах в дневное время. Так как ток велогенератора, установленного на велосипеде, составляет 0,3 А, в цепи зарядного устройства необходимо установить последовательно с аккумуляторами резистор 300 Ом, что даст возможность ограничить зарядный ток до 20 мА.

В.М. Босенко, г.Лубны, Полтавская обл.

2.Справочник радиолюбителя. 1982г.

Источник

Автономный блок питания на базе ветрогенератора

Есть множество случаев, когда проживая за городом, Вам может понадобиться небольшое количество электроэнергии для питания маломощного устройства. Например, для работы компактной метеостанции, контроля уровня воды в баке, управления автоматикой теплицы, для дежурного освещения садовой дорожки или небольшого помещения и других устройств. Для каждого из них необходимо иметь источник питания — батарею, аккумулятор или сетевой блок питания (БП). В случае периодической нагрузки устройства, целесообразно использовать БП на базе аккумулятора. Причем для его зарядки, используя устройства в этих условиях, наиболее выгодно использовать возобновляемую энергию ветра, что сделает БП экономичным и автономным.

В нашем случае, рассмотрим вариант использования энергии ветра, для дежурного освещения садового туалета, отдельно стоящего на краю участка. Так как яркое освещение на этом объекте не нужно, то для решения этой задачи достаточно малых мощностей. В течение суток аккумулятор заряжается от энергии ветра, а в темное время суток отдает ее по мере необходимости.

Для изготовления БП потребуется ветрогенератор мощностью в несколько ватт, аккумулятор небольшой емкости и зарядное устройство для него, устройство согласования напряжений.

Ветрогенератор
В качестве электрогенератора используется доработанный компактный автомобильный стартер на постоянных магнитах. Выходные данные генератора: переменный ток мощностью 1,0…6,5 вт (в зависимости от скорости ветра). Напряжение – 1…6 в; ток – 0,2…1,1 а (в диапазоне: малая — средняя скорость ветра).

Аккумулятор и зарядное устройство.
В качестве накопителя энергии применим литий-ионный аккумулятор от мобильного телефона. Схема и порядок изготовления зарядного устройства (ЗУ) для этого аккумулятора представлены в статье.

Входные данные зарядного устройства: постоянный ток напряжением 5,5…30 В. Выходное напряжение предлагаемого зарядного устройства в пределах 4,18 – 4,20 В. При использовании другого аккумулятора, при соответствующей регулировке, ЗУ позволяет получить выходное напряжение в пределах 2,5…27 В.

Согласование напряжений
Напряжение и ток от ветровой турбины изменяются в зависимости от скорости ветра, поэтому для практического использования, мы должны быть в состоянии зарядить аккумулятор и сохранить там энергию для использования. Для этого, электроэнергия от ветрогенератора должны быть преобразована из переменного тока в постоянный, с напряжением достаточным для работы зарядного устройства аккумулятора.

Предложенный ветрогенератор, как видим по выходным характеристикам, не способен выдавать необходимое напряжение по причине низкой частоты вращения. При средней скорости ветра, на выходе удается получить напряжение порядка 2…5 В, а для заряда аккумулятора требуется напряжение более 5,5 вольт. Выход из положения — применение простого преобразователя напряжения, собранного на основе четырехкратного умножителя напряжения. Подавая на вход преобразователя 2…5 В переменного тока, на выходе получим 5,5…12 В постоянного тока, что вполне достаточно для заряда аккумулятора. Один из вариантов четырехкратного умножителя напряжения, использованный в предлагаемом устройстве, показан на схеме.

Этот вариант умножителя имеет симметричную схему и хорошую нагрузочную способность, выполнен из дешевых и доступных элементов. Использование умножителя, вместо повышающего трансформатора, позволяет уменьшить габариты и вес устройства, исключить выпрямитель напряжения.

В итоге, схема автономного блока питания принимает следующий вид.

Схема состоит из 4-х блоков:
А1 – ветрогенератор;
А2 — умножитель напряжения;
А3 – аккумулятор и зарядное устройство;
А4 – блок освещения.

Изготовление автономного блока питания

1. Умножитель напряжения (блок А2), по приведенной выше схеме, собираем и распаиваем на плате размером 65 х 35 мм, вырезанной из универсальной монтажной текстолитовой платы.

Для монтажа схемы использованы нереализованные ранее отечественные диоды Д226Г, имеющие эффективный теплоотвод. Электролитические конденсаторы импортные. При необходимости, возможно собрать эту схему более компактно, используя современные импортные диоды с минимально возможным прямым напряжением, для повышения эффективности преобразователя напряжения.

Необходимо учесть, что при работе устройства, максимальный ток протекающий через диоды будет равен удвоенному току нагрузки, а на электролитах развивается удвоенное амплитудное значение входного напряжения. Соответственно конденсаторы и диоды должны быть рассчитаны на эти параметры.

Дополнительно, в блок умножителя напряжения, добавлен резистор R6 для ограничения максимального тока и стабилитрон D5 для ограничения напряжения. Эти элементы должны работать для защиты устройства при сильных ветрах. Для сглаживания пульсаций, на выходе умножителя напряжения, подключен электролит С5 (на схеме перенесен в блок А3).

2. Аккумулятор и зарядное устройство (А3). В качестве накопителя энергии применим литий-ионный аккумулятор от мобильного телефона. Схема и порядок изготовления зарядного устройства для этого аккумулятора представлены в статье.

Настройка зарядного тока схемы. Подключив к схеме разряженный аккумулятор (о чем сообщит включившийся светодиод), резистором R2 устанавливаем по тестеру величину зарядного тока – 100…150 мА.

3. Блок освещения (А4) включает в себя цепь, состоящую из трех последовательно включенных сверхярких светодиодов, ограничительного резистора R5 и выключателя питания светодиодов. Светодиоды с ограничительным резистором смонтированы на отдельной плате.

4. Изготовим плату для установки литий-ионного аккумулятора. Вырезаем из универсальной монтажной текстолитовой платы прямоугольник размером 40 х 55мм, прорезаем в плате два паза шириной 0,7…1,0мм для установки контактов. Расположение контактов зависит от модели используемого литий-ионного аккумулятора. Из медной или латунной пластины толщиной 0,5…0,7мм вырезаем Г-образные контакты и крепим их на обратной стороне платы с помощью пайки или другого соединения. Припаиваем контакты к соответствующим выходным выводам зарядного устройства и блоку освещения. На плате данного устройства выполнены две группы контактов разной высоты для параллельного подключения двух аккумуляторов (для увеличения емкости), установленных друг над другом.

5. Сборка блока питания. Собираем изготовленные блоки по приведенной выше схеме, с помощью монтажного провода. В качестве корпуса возможно использовать подходящую по размерам коробку, светильник. Желательно в пыле и влагозащищенном исполнении (работа на открытом воздухе). В данном случае использован пластмассовый корпус от старого фонарика.

6. Проверяем работу устройства.
На вход устройства подаем переменный ток напряжением 2,3 В.

Убеждаемся в правильной работе изготовленного устройства.

7. Устанавливаем собранные блоки в корпус. Индикатор заряда аккумулятора закрепляем на видном месте. Из корпуса выходит провод (контактная группа) для присоединения к генератору и включателю освещения.

8. По возможности, герметизируем зазоры от попадания пыли и влаги.

Источник

Ветрогенератор для телефона: применение устройства

Главная » Статьи » Ветряки

7593 0 Опубликовано 30 августа 2017

Вы предпочитаете активный отдых в живописных природных уголках, но при этом не желаете лишаться такого блага цивилизации, как смартфон?

Портативный ветрогенератор для телефона – универсальное устройство для поддержания заряда батареи (заменяет электросеть). Что это за приспособление?


Один из примеров портативного ветрогенератора для мобильного телефона

Где его приобрести или как сделать своими руками? Выясняем все аспекты.

Генератор

Роль генератора предлагаемой конструкции выполняет электромотор постоянного тока (1200 об/мин, при U=48 V, I=15 A), который при желании можно заменить автомобильным генератором. На вале электродвигателя укреплена звёздочка (Z=10), снятая с велосипедного двигателя. Кареточный узел, вместе с ведомой звёздочкой (Z=48) позаимствованы с велосипеда. Раму (рис.2.) следует распилить болгаркой, придать ей необходимую форму, сварить и закрепить на ней электродвигатель болтами М8. Роликовую цепь рекомендуется взять мотоциклетную, т.к. она обладает большим запасом прочности.

Конструкция ветрогенератора

  1. Корпус генератора на постоянных магнитах
  2. Лопасти
  3. Защитный корпус хвостовика
  4. Уплотнительная крышка
  5. Анемометр
  6. Датчик направления ветра (флюгер)
  7. Соединительный разъем флюгера
  8. Опоры крепления анемометра и флюгера
  9. Распределительный блок
  10. Датчик угла поворота хвостовика
  11. Блок питания
  12. Блок управления
  13. DC24V мотор регулировки направления
  14. Редуктор
  15. Переключатель
  16. Отверстие для заливки масла
  17. Передаточный механизм редуктора
  18. Отверстие для слива масла
  19. Датчик нулевого угла
  20. Блок клемм

Вал каретки

Вал каретки необходимо заменить новым, большей длины, навинтить на него гайку М16, надеть фланец — металлический диск 1 к которому приварена головка торцевого ключа Х24, отрезанная на расстоянии 2-х см от края (рис.3.) и зажать ещё одной гайкой. На фланце болтами М6 закреплён диск (рис.4.), так, что имеющееся на нём отверстие совпадает с выступом на фланце.

Этапы работы

Сам процесс конструирования походного ветрогенератора довольно прост и вся работа займёт менее одного часа. На первом этапе следует спаять диоды между собой таким образом, чтобы были соединены только их отрицательные контакты. Полупроводниковые приборы используются в этой конструкции для ограничения прохода тока обратно к двигателям. Если этого не сделать, то один мотор будет использовать электроэнергию от другого, а напряжение для нагрузки будет не хватать.

После соединения диодов можно закрепить на бруске компьютерные куллеры с помощью саморезов. Чем больше их будет использовано, тем большую силу тока сможет выдавать самодельный ветрогенератор. Применение именно компьютерных кулеров объясняется тем, что независимо от того в каком направлении будет вращаться крыльчатка, полярность на контактах останется неизменной.

Каждый отдельный положительный контакт от двигателя необходимо соединить с плюсом диода. Отрицательные контакты соединяются между собой. Электролитический конденсатор подключается в соответствии с полярностью к общему отрицательному контакту от моторчиков — это минус питания, и к спайке минусовых выводов диодов — это плюс питания.

Самодельный ветрогенератор можно считать готовым. Теперь необходимо закрепить навесные радиодетали на бруске с помощью изоленты и вытянуть провода питания.

Сила тока, которую можно получить от такой интересной конструкции напрямую зависит от количества используемых куллеров. В полевых условиях иметь подобную примочку довольно полезно. С помощью неё можно включить светодиодный фонарь, в котором батарейки пришли в негодность. В идеале можно попробовать включить разряженный мобильный телефон, но для этого потребуется сильный ветер, и достаточная сила тока от самодельного ветрогенератора.

Лопасти

Лопасти 6 (рис.1.) вырезаются из 2-х миллиметровой алюминиевой пластины и изгибаются до получения дугообразной формы, после чего крепятся саморезами на спицы 5 (рис.1.), представляющими собой деревянные бруски 36х55х500 мм, крепящиеся к диску двумя болтами М8. При установке 6-ти лопастей ветрогенератор устойчиво работает при слабом ветре, когда скорость ветра слишком велика, лучше оставить только две лопасти.

Снизу к раме приваривается обрезок трубы (130-150 мм), немного меньшего диаметра, чем труба-мачта. Перед установкой он смазывается и под него кладётся латунная шайба, что позволяет всему узлу легко вращаться и становится по ветру с помощью стабилизатора (рис.5.).

Небольшие ветрогенераторы для дома

Энергия ветра — это экологически чистая, неисчерпаемая энергия. Для преобразования энергии ветра в электрическую энергию служат ветряные электростанции (мельницы, ветрогенераторы).

Ветряные мельницы используемые для выработки электрической энергии бывают разных размеров. Большие ветрогенераторы, которые обычно используются на ветряных фермах (электростанциях), могут вырабатывать большое количество электричества — сотни мегаватт, которым можно обеспечивать сотни домов. Небольшие ветряки, которые вырабатывают не больше 100 кВт электроэнергии, используются в частных домах, фермах, подсобных хозяйствах и т.п., служат источником дополнительной электроэнергии, способствуют уменьшению оплаты за основной источник электроэнергии. Очень маленькие ветряки, мощность которых составляет 20-500 Вт, используются для подзарядки аккумуляторов и др. сферах, где не требуется большое количество электроэнергии.

Небольшие ветроэлектростанции будут экономически эффективны, если будут соблюдены следующие условия:

  • ветер в вашем месторасположении дует стабильно и много дней в году;
  • есть достаточно места для установки ветряка;
  • местными властями разрешена установка ветряков;
  • ваши затраты на электроэнергию высоки;
  • вы не подключены к питающей сети или она находится далеко от вас;
  • вы готовы инвестировать деньги в ветрогенератор;
  • во избежание проблем с соседями, ветряк должен находится не ближе чем 250-300м к ним.

Требования к ветру

Будет ли ваш ветряк для дома экономически целесообразным — больше всего зависит от качества ветра. В большинстве случаев, среднегодовая скорость ветра в 4.0-4.5 м/с (14.4-16.2 км/ч) является тем минимумом, чтобы ветрогенератор был экономически выгоден. В анализе ветра вам помогут сайты, где представлены карты ветров России и других стран. Также, вам может помочь местная метеорологическая станция, где вы можете посмотреть архив данных по силе ветра. Но следует обратить внимание на расположение станции, т.к. различные препятствия — деревья, строения, возвышенности могут стать причиной искаженных данных о ветре.

Для более точной оценки ветра в вашей местности вам необходимо приобрести устройства измеряющие скорость ветра. Особенно это актуально, если ваша местность холмистая или имеет необычный ландшафт.

Наиболее важной деталью в приборе для измерения скорости ветра является анемометр. Он состоит из чашечной (или лопастной) вертушки укреплённой на оси, которая соединена с измерительным механизмом. Лопасти анемометра вращаются и вырабатывают сигнал, пропорциональный скорости ветра. При покупке анемометра не будет лишним приобрести устройство, записывающее показания с него, а также трипод, кронштейн и т.п., где он будет монтироваться.

Существуют более дорогие цифровые устройства для измерения скорости ветра. Там также используется анемометр, но данные поступают в компьютер, где они обрабатываются и запоминаются. В последнее время данные устройства становятся все более популярными и дешевыми. Пример данных о скорости ветра, снимаемых и отображаемых в реальном времени вы можете посмотреть на сайте gdeduet.ru

Неважно какой измерительный инструмент вы используете для оценки скорости ветра, но хотя бы минимум один раз в год вы должны сравнивать ваши данные с другими. Также важно измерительно оборудование размещать достаточно высоко, чтобы избежать турбулентности, которая создается деревьями, строениями и другими препятствиями. Наиболее оптимальным размещением измерительного прибора является его размещение на уровне центра ротора ветрогенератора.

Место для размещения ветрогенератора

Большое значение имеет место, где вы собираетесь разместить ваш ветряк. Помните, что не следует его размещать вблизи деревьев, домов и т.п., т.к. вы не получите полной отдачи от ветряка.

Также учитывайте что:

  • сила ветра всегда больше на вершине холмов, у береговой линии, в степях, в местах где нет деревьев и строений.
  • деревья могут расти, а ветряк — нет.
  • необходимо заранее информировать соседей о ваших планах, во избежании проблем с ними в будущем.
  • желательно поставить ветряк на достаточном расстоянии от соседей. Обычно достаточно 250-300м.

Не ожидайте, что ваша ветроэлектростанция будет все время вырабатывать достаточное количество электроэнергии. Скорость ветра в одном и том же месте может сильно различаться и как следствие будет и различаться количество вырабатываемой электроэнергии. И если сила ветра будет меняться в пределах 10%, то вырабатываемая электроэнергия будет изменяться в пределах 25%!

Типы ветрогенераторов

Существует 2 основных типа ветрогенераторов: с горизонтальной осью вращения и вертикальной. Горизонтальные ветряки должны быть направлены по ветру. Для этого, в их конструкции предусмотрен так называемый «хвост». Вертикальные ветрогенераторы работают в любом направлении ветра, но требует больше наземного пространства, т.к. необходимо предусмотреть растяжки для устойчивости ветряка.

Компоненты ветроэлектростанции

Основные компоненты типичной ветряной электростанции показаны на рисунке ниже.

Они включают в себя:

  • ротор с лопастями, которые имеют аэродинамическую форму.
  • редуктор или коробка передач, которые согласует скорость вращения между ротором и генератором. Маленькие ветряки (до 10 кВт) обычно не имеют редуктора.
  • защитный кожух, который защищает от внешних воздействий редуктор, генератор, электронику и другие компоненты ветрогенератора.
  • хвост ветряка — необходим для его поворота по ветру.

Для ветрогенераторов с горизонтальной осью вращения необходима мачта (вертикальные ветряки обычно устанавливаются прямо на земле).

Мачты бывают различных видов: на растяжках (которые жестко закреплены), поворотная мачта на растяжках (может подниматься и опускаться для обслуживания и ремонта), свободно-стоящая мачта без растяжек (они тяжелые, но зато занимают не так много места на земле).

Очень важным факторов является высота мачты. Энергия ветра пропорциональна скорости ветра в третей степени (в кубе). Т.о. если скорость ветра удвоилась, то энергия ветра возрастет в 8 раз (2х2х2=8) (Рисунок 6). Скорость ветра увеличивается с высотой, т.е. увеличивая высоту мачты можно сильно увеличить энергоэффективность ветряка.

Рекомендуемая высота установки 24-37 метров. Устанавливать ветряк на меньшей высоте — то же самое, что расположить солнечные батареи в тени.

На всякий случай просмотрите местное законодательство на предмет ограничений на высоту мачты для ветроэлектростанций. Используйте конструкцию мачты, одобренной производителем ветряка, иначе вы можете потерять гарантию на него. Обязательно заземлите мачту и предусмотрите молниеотвод.

Для электробезопасности необходимо использовать разъединители и автоматические выключатели. Они также обеспечат безопасный доступ к ветряку для его обслуживания и модернизации.

Также могут понадобиться другие компоненты ветроэлектростанции. Аккумуляторы — смогут накапливать излишки электроэнергии от ветряка. Но, поскольку аккумуляторы используют постоянный ток, то для преобразования его в переменный необходим инвертор.

Если дом, ферма или хозяйство подключены к общей системе энергообеспечения, то в ветренные дни излишек энергии можно продавать электросетям (неактуально для нашей страны). А когда ветер слабый и электроэнергии ветряка не хватает, то нужно будет покупать электроэнергию от общей электросети.

Стоимость ветрогенератора

Стоимость небольшого ветряка $2000-$8000 за 1 кВт. Однако, это только 12-48% от стоимость всех компонентов ветряной электростанции: инверторы, аккумуляторы, зарядные устройства, АВР и т.п.

Но большой плюс ветрогенератора в том, что однажды купив его, вам больше практически ни за что не прийдется платить, кроме планового техобслуживания.

Производительность ветрогенератора обычно описывается производителем как график зависимости выходной мощности к скорости ветра.

Одной из проблем при выборе и сравнении ветрогенераторов является отсутствие единного стандарта измерения выходной мощности. Производители сами выбирают при какой скорости ветра указывать выходную мощность. Возьмем к примеру «Wind-o-matic» и «Mighty-wind» — у обоих заявленная мощность 1000 Ватт. Но у «Wind-o-matic» это мощность при скорости ветра 5 м/с, в то время как у «Mighty-wind» это мощность при 10 м/с. Вследствии того, что энергия ветра пропорциональна скорости ветра в кубе, то ветряк выдающий 1 кВт при при 10 м/с, даст только 1/8 от максимальной мощности при 5 м/с. Т.о. при скорости ветра 5 м/с «Wind-o-matic» будет выдавать честные 1000 кВт, в то время как «Mighty-wind» всего 125 Ватт!

Более правильным является сравнение ветрогенераторов по площади и размеру лопастей. Чем больше площадь, тем больше энергии может вырабатывать ветряк. При удвоении площади солнечных батарей — мощность увеличивается вдвое. Также и в ветрогенераторе — при увеличении площади лопастей возрастает выходная мощность.

Если вы не знаете площадь лопастей ветряка, то вы можете сравнивать по диаметру ротора. Незначительное увеличение диаметра ротора ведет к значительному увеличению отдаваемой электроэнергии от ветрогенератора (см. рисунок ). Значения указанные на рисунке являются ориентировочными и на них опираться не следует, т.к. генерируемая мощность ветряка зависит от множества других факторов.

Выбор размера ветрогенератора

Для определения подходящего размера ветряка для начала посмотрите сколько электроэнергии вы потребляете в месяц. Затем полученное значение умножьте на 12 месяцев. Примерное количество электроэнергии вырабатываемое ветряком вы можете получить по формуле: AEO = 1.64 * D*D * V*V*V Где: AEO — электроэнергия за год (кВт*ч/год), D — диаметр ротора (в метрах), V — среднегодичная скорость ветра (м/сек) Т.о. вы можете выбрать оптимальный размер ветрогенератора, вырабатывающий необходимую мощность для вашего дома или хозяйства. И возможно сэкономить на покупке.

Отношения с соседями

Многие люди требуют бережного отношения к окружающим их вещам: ландшафту, виду, исторически местам, тишине, соседям и т.п. Обязательно переговорите с соседями о ваших планах установить ветроэлектростанцию. Также вы должны понимать, что людям свойственен страх перед чем-то новым и неизвестным.

Многие люди думают, что ветряки наносят вред птицам. Но на самом деле раздвижные двери более опасные для птиц, чем небольшие ветряки. Также ветрогенераторы оказывают ничтожное влияние на радио и телевизионное вещание. Лопасти всех современных ветряков сделаны из стекловолокна или дерева. Эти материалы прозрачны для электромагнитных волн.

Соседи не приемлят шум от ветрогенератора. Прежде чем установить ветроэлектростанцию, ознакомьте ваших соседей с теми шумами, которые она может производить:

  • аэродинамические шумы — возникают из-за потоков воздуха производимыми лопастями. Шумы увеличиваются со скоростью вращения ротора. Иногда из-за воздушных турбулентностей, некоторые виды лопастей могут издавать свистящий звук.
  • механические шумы — могут возникать в других компонентах ветряка (генератор, редуктор и т.п.)

Сколько шума может производить ветроэлектростанция?

В 250-ти метрах, от типичной ветроэлектростанции уровень звукового давления составляет приблизительно 45 дБ. Небольшие ветряки производят не больше шума, чем кондиционеры.

Лопасти небольшого ветряка вращаются со средней скоростью 175-500 оборотов в минуту, максимум 1150 об/мин. Большие ветряки вращаются с постоянной скоростю 50-15 об/мин

Обслуживание

Ветроэлектростанции требуется постоянное техническое обслуживание — регулярные осмотры, смазка трущихся частей и т.п. Ежегодно проверяйте болтовые соединения и электрические контакты, подтягивайте их, если необходимо. Также проверяйте ваш ветряк на наличие коррозии и натяженность растяжек мачты.

Если лопасти сделаны из дерева, то наносите краску для защиты. На кромки лопастей наклейте прочную ленту для защиты от абразивной пыли и летающих насекомых. Если краска растрескается, а пленка отклеится, то незащищенное дерево быстрее прийдет в негодность. Влажность, проникшая в дерево лопастей, может вызвать дисбаланс ротора. Ежегодно проверяйте лопасти ветряка.

После 10 лет эксплуатации лопасти и подшипники должны быть заменены. При правильной установке и эксплуатации ветроэлектростанция может прослужить 30 и более лет. Правильное обслуживание также минимизирует уровень шума от вашего ветряка.

Безопасность

Все ветрогенераторы имеют максимальную скорость вращения ветра, выше которой они не могут работать. Когда скорость ветра превышает это значение, то в ветрогенераторе должен сработать тормозной механизм не допускающий превышения критического значения.

При использовании ветряка в холодных районах, необходимо позаботиться о проблеме обледенения, а также размещать аккумуляторный блок в изолированном месте.

Установка ветряка на крышу здания не рекомендуется. Но если он маленькой мощности (до 1 кВт), то можно сделать и исключение. Дело в том, что ветрогенератор может давать вибрацию, которая может передаваться на поверхность, на которой он установлен.

Мачта

Изготавливается из трубы диаметром от 34 мм (рис.1), к нижнему торцу которой приварена опорная площадка 30х30 см. Для того чтобы было удобно крепить растяжки к трубе можно приварить гайки М10.

Рассматриваемый портативный ветрогенератор вполне пригоден и для стационарного применения. В этом случае рекомендуется сделать мачту большей длины. Кроме того, если генератор не будет перевозиться с места на место, мачту можно выполнить не только из трубы, а и из любого другого подручного материала, например, из дерева. Возвращаясь же к походному варианту, стоит отметить, что для облегчения транспортировки устройства, имеет смысл сделать мачту разборной — состоящей из двух половин, скрепляемых, например, муфтой.

Портативный Ветрогенератор своими руками

Сборка портативного Ветрогенератора из подручных средств.


Данное весьма полезное приспособление сможет быть полезным вам в походе, на охоте или рыбалке. Оно позволяет пополнить заряд батареи на вашем мобильном телефоне телефон, плеере или фонарике. Так же данная модель ветрогенератора достаточна легка и компактна, что делает ее чрезвычайно мобильной и незаменимой в путешествиях.
Набор материалов, полезных для разработки нашего портативного ветрогенератора: 1) Шаговый двигатель( автор использовал из старого сканера) 2) Выпрямляющие диоды (понадобилось 8 диодов 1N4007 для реализации задумки) 3) Конденсатор 1000 мкФ 4) LM7805 (это стабилизатор, он же регулятор напряжения) 5) Обыкновенная труба на основе ПВХ 6) Некоторое количество пластиковых деталей (более подробное описание будет в процессе создания ветрогенератора) 7) Так же будут необходимы пластины из алюминия или другого метала (желательно полегче весом).

Собственно начнем с шагового двигателя. Автор достал такой из обычного старого сканера, который уже отслужил свое и в принципе был ему не нужен. Собственно его вы и можете лицезреть на фотографии, которая предоставлена ниже. Вот он — четырехфазный шаговый двигатель.


Кстати подобный агрегат можно получить не только из старого сканера, но так же и из дисковода магнитных дисков например. Так что, если у вас завалялся ненужный дисковод, искать сканер не обязательно.

Собственно получив необходимые компоненты из списка материалов указанного в статье, вы смело можете приступать к полномасштабной сборке выпрямителя. Как уже было сказано нам потребуется восемь диодов, то есть по две штуки на каждый шаг двигателя.


Напряжение на выходе мы стабилизируем при помощи конденсатора емкостью не менее чем в 1000мкФ и стабилизатора напряжения LM7805.


Сделанный генератор способен легко выдавать напряжение от пяти вольт и даже больше. Но в рамках именно этого проекта, так как в целях будет зарядка мобильного телефона и других устройств вполне себе достаточно даже пяти вольт.


Следующим шагом будет сбор лопастей. Они то и будут ловить энергию воздуха для нашего генератора. Вырезая лопасти будьте аккуратны, постарайтесь сделать их наиболее плавными и обтекаемыми. Ведь чем легче и ровнее они будут, тем проще будет поймать ветер необходимой силы, чтобы наш генератор выдавал нужное напряжение.


После изготовления лопастей можно приступить к полной сборке аппарата. Лопасти крепим в трубе из пвх, с другой стороны ставим пластинку для баланса и координации винта по ветру. Собственно подключив ветряк к генератору мы получим готовое устройство.


Самое время его испытать в действии. Ниже представлена фотография работы собранного ветрогенератора.


Как вы можете видеть на фотографии — наша самоделка вполне себе достойно генерирует стабильное напряжение в 4.95 вольт.


Этого вполне хватает для того, чтобы заряжать как мп3-плеер так и мобильный телефон, а значит наша цель достигнута! Источник

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Контроль зарядки аккумулятора

В пульте контроля зарядки аккумулятора (рис.6.) можно использовать амперметр, рассчитанный на ток до 20 A, вольтметр на 30 V и диод — на ток до 20A. В качестве реостата используется пятидесяти ватный резистор ППБ-50Г 5-10 Ом, у которого удалены 3-4 витка провода с левого края. Сопротивление необходимо для того, чтобы имелась возможность ненадолго зашунтировать генератор и, таким образом, останавливать его, когда зарядится аккумуляторная батарея. Шунтировать генератор обрезком провода или другим металлическим предметом нельзя, т.к. это может привести к его поломке. Также нельзя и останавливать ветряк вручную за лопасти, что может привести к серьёзной травме даже при относительно слабом ветре. В качестве токоведущего провода следует взять мягкий кабель сечением около 4,0 мм2 и пропустить его внутри мачты.

При желании пульт можно доработать, установив диодный мост и параметрический стабилизатор напряжения, либо (что более экономично) импульсный стабилизатор, что исключит перезаряд аккумулятора. Также в схему можно ввести преобразователь напряжения, что позволит задействовать бытовые электроприборы, питающиеся от сети 220 V.

Опорные мачты

Опорная мачта не только держит ветряной генератор. Высота мачты определяет, сколько электроэнергии выработает ветроустановка. Обычно, чем выше мачта, тем больше скорость ветра. Качество опорной мачты также имеет большое значение для эксплуатации всей системы.

При инженерных расчетах сопротивления конструкции мачт ветрам использовались характеристики наиболее ветреных районов нашей планеты.

Мы производим три основных типа: опорная мачта на растяжках, свободностоящая башня, свободностоящая башня с гидроприводом.

Гидравлическая технология опорных мачт применяется при монтаже и обслуживании, для автоматического подъема и опускания во время установки и эксплуатации ветровых турбин.

При использовании гидравлического оборудования может вообще не потребоваться кран, стоимость установки и обслуживания значительно уменьшается. Кроме того, гидравлическое оборудование можно использовать повторно, что дает практические удобства и является более экономически выгодным.

Источник

Оцените статью