Ваттметр для аккумулятора lifepo4

Измерение уровня заряда LiFePo4- аккумуляторов

Литий-железо-фосфатные аккумуляторы, также известные как LiFeP04 или LFP, используются в приложениях со значительными токовыми нагрузками. При измерении уровня заряда LiFeP04-аккумулятора необходимо соблюдать особую осторожность. В этой статье рассказываются, почему литий-железо-фосфатные аккумуляторы становятся идеальным выбором для некоторых приложений, анализируются особенности, которые следует учитывать при измерении уровня их заряда, а также приводятся результаты испытаний, полученные при использовании микросхем измерения заряда от Maxim.

Рост популярности различных типов литий-ионных аккумуляторов

Доля используемых во всем мире литий-ионных аккумуляторов (Li-ion) с каждым годом увеличивается. Благодаря высокой плотности энергии, низкому саморазряду и незначительному эффекту памяти Li-ion находят применение в широком спектре приложений.

В настоящий момент на рынке представлены литий-ионные аккумуляторы различных моделей, каждая из которых имеет свои уникальные характеристики. Тем не менее, все Li-ion можно разделить на несколько основных групп, отличающихся реализаций химических процессов. У каждого типа литий-ионных аккумуляторов есть достоинства и недостатки, что делает их оптимальными для той или иной области применения.

Особенности LiFeP04-аккумуляторов

Преимущества. Для создания катода LiFeP04-аккумуляторов используется литий-фосфат железа, в то время как анод изготавливается из углерода. LiFeP04-аккумуляторы термически и химически более стабильны, чем аккумуляторы с другими химическими составами. Они не выходят из строя даже при возникновении аварийных ситуаций, таких как перезарядка или короткое замыкание, и не подвержены лавинообразному разрушению при перегреве. Эти аккумуляторы могут использоваться в широком диапазоне температур от −40 до 70°C (и более).

Читайте также:  После зарядки аккумулятор не крутит стартер

По сравнению с литий-ионными аккумуляторами других типов (например, LCO, LMO, NMC и NCA) LiFeP04-аккумуляторы обеспечивают более длительный срок службы – от 1000 до 2000 циклов заряда-разряда. Ячейки LiFeP04 способны выдерживать воздействие высокого напряжения в течение длительного времени с минимальными последствиями, чем не могут похвастаться другие химические источники тока (ХИТ). Для LiFeP04-аккумуляторов пиковый разрядный ток может достигать очень высоких значений, вплоть до 25°C.

Недостатки. LiFeP04-аккумуляторы имеют низкое номинальное напряжение – всего 3,2 В. Это означает, что их начальная плотность энергии оказывается ниже, чем у LCO, LMO, NMC и NCA. Ячейки LiFeP04 также чувствительны к влаге. Прямой контакт с водой приводит к потере активного лития, в результате чего плотность энергии уменьшается. Адекватную стойкость к влажности имеют только высококачественные аккумуляторы, изготовленные с соблюдением строгого контроля качества. Как и другие виды ХИТ, литий-железо-фосфатные аккумуляторы характеризуются ухудшением параметров при низких температурах.

Типовые области применения. Литий-железо-фосфатные аккумуляторы применяются в самых различных областях. В качестве примеров можно привести: электромобили, электрические газонокосилки, подъемники, мусоровозы, роботы, домашние ИБП, гибридные генераторы, вспомогательные силовые установки для грузовых автомобилей, устройства мониторинга погоды, морские буи, оборудование для нефте- и газопроводов, устройства контроля номерных знаков, игровое оборудование и т.д.

В чем сложность измерения уровня заряда LiFeP04-аккумуляторов?

Литий-железо-фосфатные аккумуляторы имеют чрезвычайно плоские кривые разряда/заряда и, кроме того, обладают гистерезисом, что затрудняет контроль уровня заряда этих элементов. На верхней части рис. 1 представлена типовая кривая заряда/разряда для LiFeP04-аккумулятора. Не сложно заметить, что график имеет продолжительный участок, на котором напряжение изменяется чрезвычайно медленно. На нижней части рис. 1 представлен гистерезис кривой заряда/разряда LiFeP04 и указана ошибка, вызываемая им, при определении уровня заряда (State-of-Charge SOC). Для сравнения на рис. 2 изображена кривая разряда литий-никель-кобальтовой алюминиево-оксидной батареи, которая демонстрирует значительное изменение напряжения в процессе разряда.

Читайте также:  Аккумуляторы для автомобиля тех обслуживание

Рис. 1. Типовая кривая заряда/разряда LiFeP04-аккумулятора (вверху). Гистерезис в LiFeP04-аккумуляторе и ошибка, вызываемая им, при определении уровня заряда (SOC)

Рис. 2. Типовая кривая заряда/разряда литий-никель-кобальтовой алюминиево-оксидной батареи

Некоторые другие ХИТ ведут себя примерно также как и LiFeP04-аккумуляторы, например, LiCoPO4-аккумуляторы, LiFeSO4F-аккумуляторы и LiMnPO4-аккумуляторы.

Как точно измерить уровень заряда LiFeP04-аккумулятора?

Существуют методы, позволяющие получать достаточно высокую точность при измерении уровня заряда LiFeP04-аккумуляторов. Как уже было сказано выше, кривая разряда для таких элементов оказывается чрезвычайно плоской. Изменение SOC на 1% приводит к изменению напряжения на разомкнутых клеммах (open-circuit-voltage, OCV) всего лишь на несколько мВ. Кроме того, кривая разряда LiFeP04-ячеек имеет гистерезис. Специальный алгоритм предсказания OCV (не требующий начальных условий, полного заряда или разряда аккумулятора) в сочетании с традиционным методом интегрирования тока, продемонстрировал значительно меньшую чувствительность к напряжению по сравнению с другими алгоритмами, использующими метод интегрирования тока.

Большинство альтернативных методик подразумевает использование начальных параметров аккумулятора и дальнейшую коррекцию с учетом измеренного напряжения. Многие алгоритмы выполняют коррекцию достаточно редко (несколько раз в день). В результате влияние погрешности OCV при измерении SOC оказывается значительным. Любая ошибка при выполнении коррекции обычно фиксируется и, следовательно, сохраняется до следующей коррекции. Из-за этого выбор алгоритма и постоянный контроль напряжения особенно важны для LiFeP04-аккумуляторов. Предлагаемый алгоритм не так сильно зависит от точности измерения напряжения.

Испытания

Мы провели тестирование нового алгоритма оценки OCV с интегрированием токов. Для этого использовался LiFeP04-аккумулятор ANR26650M1-B с номинальной емкостью 2500 мАч. Тщательно отрегулированные датчики продемонстрировали превосходную точность при измерении уровня заряда. Мы выбрали тестовую методику, в которой аккумулятор в течение недели заряжался и разряжался до достаточно глубокого уровня, но без полного разряда или заряда. При таком сценарии измерение SOC является очень сложной задачей не только для LiFeP04-элементов. Как видно из графиков, алгоритм демонстрировал погрешность не более 2% на протяжении всего цикла испытаний (рис. 3,4,5).

Рис. 3. Результаты испытаний – графики напряжения, тока, SOC, погрешность SOC и температуры. Погрешность не превышает 2%

Рис. 4. Благодаря сложному алгоритму вычисления SOC, погрешность измерения не превысила 2% даже при проведении месячных испытаний, в ходе которых аккумулятор не достигал полного разряда или полного заряда

Рис. 5. Погрешность измерения SOC не превышает 2% даже при -5 °C

Примеры интегральных схем для измерения уровня заряда LiFeP04-аккумуляторов

При проведении тестовых испытаний мы использовали семейство микросхем MAX172xx. В отличие от обычных литий-кобальтовых ячеек, кривая OCV/ SOC для LiFeP04-аккумуляторов имеет протяженный плоский участок. В результате традиционные алгоритмы расчета SOC оказываются весьма чувствительными к точности измерения напряжения OCV.

Чтобы алгоритм измерения SOC обеспечивал приемлемую точность, необходимо использовать для расчетов только данные, получаемые за пределами пологой запрещенной зоны. Поэтому алгоритм в MAX172xx использует только циклы заряда и разряда, которые выходят за пределы этой запрещенной зоны (например, от 20% до 72%).

На рис. 6. представлена кривая OCV-SOC для LiFeP04-аккумулятора с указанием запрещенной области.

Рис. 6. Диаграмма OCV-SOC для LiFeP04-аккумулятора с указанием запрещенной области. Эта часть разрядной кривой не используется при расчете полной емкости

Чтобы настроить MAX172xx для работы с LiFeP04-аккумуляторами, необходимо выполнить следующие действия:

  1. Отправить аккумулятор инженерам Maxim для исследования. Инженеры создадут математическую модель аккумулятора.
  2. Установить бит enSC в регистре nNVCfg1 (1B9h), чтобы активизировать режим работы с LiFeP04-аккумуляторами и выполнить блокировку запрещенной зоны.
  3. Загрузить оставшуюся часть модели (см. руководство пользователя User Guide 6260 MAX1720x/MAX1721x Software Implementation Guide).

MAX17055 и MAX1726x также поддерживают работу с LiFeP04-аккумуляторами после дополнительной адаптации. Чтобы обеспечить высокую точность при измерении SOC, необходимо выполнить тестовые испытания и создать модель для конкретной модели аккумулятора. Эти микросхемы имеют поддержку специального алгоритма, предназначенного для работы с LiFeP04 и другими аккумуляторами с плоской кривой заряда-разряда.

Чтобы настроить MAX1726x и MAX17055 для работы с LiFeP04-аккумуляторами, необходимо выполнить следующие действия:

  1. Отправить аккумулятор инженерам Maxim для исследования. Инженеры создадут математическую модель аккумулятора.
  2. Запишсать 0x0060 в регистр ModelCFG (DBh), чтобы активизировать режим работы с LiFeP04-аккумуляторами и выполнить блокировку запрещенной зоны.
  3. Загрузить оставшуюся часть модели батареи (см. руководство User Guide 6365 MAX17055 Software Implementation Guide и User Guide 6595 MAX1726x Software Implementation Guide).

Заключение

LiFeP04-аккумуляторы идеально подходят для приложений, работающих с высокими нагрузочными токами. Вместе с тем при использовании LiFeP04 достаточно сложно добиться точного измерения уровня заряда (SOC). В данной статье был рассмотрен алгоритм измерения SOC, основанный на оценке напряжения (OCV) с помощью метода интегрирования токов. Этот алгоритм решает проблемы с точностью измерений, возникающие при работе с LiFeP04-аккумуляторами.

Источник

Что такое Lifepo4 аккумулятор и как им пользоваться

Чтобы обеспечить технику электроэнергией, производители использовали свинцово-кислотные аккумуляторы. С развитием технологий появились литий-ионные аккумуляторы с более высокой энергетической плотностью, что позволяло дольше пользоваться техникой без подзарядки. Такие аккумуляторы используются до сих пор. Производители устанавливают их в мобильные телефоны, цифровые камеры, ноутбуки и даже электромобили. Главный недостаток литий-ионных аккумуляторов — они быстро изнашиваются.

Чтобы продлить жизнь литий-ионным аккумуляторам, американский профессор придумал новую технологию. Он разработал LiFePO4 аккумулятор и стал использовать его как катод к литий-ионному аккумулятору. Однако новый тип аккумулятора обладал меньшей емкостью и все еще не мог выйти на широкий рынок. Чтобы решить проблему, американский профессор привлек инвесторов. Среди них была небезызвестная компания Motorola. Деньги инвесторов позволили довести технологию до ума и вывести LiFePO4 аккумуляторы на широкий рынок.

Сейчас LiFePO4 аккумуляторы набирают все большую популярность, активно вытесняя своих конкурентов.

Не превышайте допустимых значений.

Любые литий-ионные аккумуляторы, в том числе новые LiFePO4, быстро изнашиваются, если их разряжать до минимума или долго держать на зарядке. Если часто разряжать батарею ниже допустимых значений, она начнет терять емкость и со временем будет быстрее разряжаться. Если перезарядить батарею, она вздуется из-за скопления газа внутри ячеек и быстро выйдет из строя.

Чтобы продлить срок службы литий-железо-фосфатного аккумулятора, заряжать аккумулятор рекомендуется до 3,65V (пик 3,7V), разряжать не ниже 2,5V (пик 2V)

Используйте защитную плату BMS

В мобильных телефонах и электромобилях аккумуляторы обычно заряжаются до максимума и после этого сразу используются. Но если не отключить зарядное устройство после полной зарядки, аккумулятор разбухнет и выйдет из строя. Однако необязательно пристально следить за напряжением аккумулятора, чтобы он не разряжался до минимума и не перезаряжался. Производители придумали как решить эту проблему. Они устанавливают на каждый аккумулятор защитную плату BMS. Плата контролирует параметры источника питания, от которого заряжается аккумулятор, и полностью управляет процессом разрядки и зарядки.

Если LiFePO4 аккумулятор начнет перезаряжаться, плата BMS обеспечит равномерную нагрузку на ячейки. Если аккумулятор сильно разрядится, плата BMS отключит его от потребителя энергии.

Если вы покупаете не целый аккумулятор, а только ячейки и не устанавливаете BMS плату, то напряжение при зарядке аккумулятора будет распределяться неравномерно. Например, вы пользуетесь аккумулятором из четырех ячеек LiFePO4. Со временем три ячейки становятся примерно одинаково заряженными, где-то на 3,5V. А заряд четвертой ячейки оказывается гораздо выше — 4, 25 V. В таком случае четвертая ячейка начнет перезаряжаться и выйдет из строя. Даже несмотря на то, что общее напряжение при зарядке остается в пределах допустимых значений.

Если нет возможности поставить защитную плату BMS, постарайтесь поставить хотя бы балансировочные платы. Они помогают сбалансировать напряжение.

Однако балансировочные платы никак не помогут спасти аккумулятор, если все ячейки слишком сильно разрядятся или начнут перезаряжаться. К тому же, если разница в заряде ячеек будет слишком высокой, балансировочная плата не поможет выравнивать напряжение.

Самый надежный способ защитить литий-железо-фосфатный LiFePO4 аккумулятор — поставить защитную плату BMS.

Учитывайте режим работы

Любой аккумулятор можно использовать в двух режимах работы: циклическом и буферном. Циклический режим проще всего объяснить на примере бытовой техники. Вы пользуетесь телефоном целый день, потом ставите его на зарядку, а когда батарея полностью заряжена — продолжаете пользоваться. Буферный режим — это когда аккумулятор постоянно находится на подзарядке. Такой способ работы можно встретить в бесперебойных источниках питания. При буферном режиме работы напряжение аккумулятора редко падает до критических значений, поэтому он служит дольше, чем при циклическом режиме работы.

Чтобы дополнительно продлить жизнь аккумулятору, рекомендуется понизить напряжение заряда. Обычно для LiFePO4 это 3.40-3.45V. Но лучше всего сверится с рекомендуемыми значениями от производителя. Их можно узнать у продавца во время покупки.

Отбалансируйте ячейки

Если Вы решили самостоятельно собирать аккумулятор, то перед сборкой обязательно отбалансируйте ячейки (аккумуляторы 3,2V). Ячейки не всегда бывают одной степени заряженности. Поэтому перед использованием нужно предварительно провести балансировку. Для этого нужно параллельно соединить каждую ячейку — плюс каждой ячейки соединить между собой, и то же самое сделать с минусом. Заряжать соединенные таким образом ячейки нужно до 3,65V.

Если одна или несколько ячеек покажут разность сопротивлений, во время балансировки произойдет выравнивание напряжений.

Преимущества LiFePO4 аккумулятора перед свинцовыми аккумуляторами

Может показаться, что правильно пользоваться литий-железо-фосфатным аккумулятором сложно. Гораздо легче пользоваться привычными свинцово-кислотными аккумуляторами. Но у LiFePO4 есть весомые преимущества:

  1. От 2000 до 3000 циклов заряда-разряда.
  2. Срок службы от 10 до 20 лет, в зависимости от интенсивности эксплуатации.
  3. Благодаря низкому сопротивлению ячеек, аккумулятор можно зарядить за один час током 1С.
  4. Аккумулятор не просаживается под нагрузкой. Благодаря этому его КПД составляет 95-98%.

Что нужно запомнить

Чтобы легче усвоить всю информацию в статье, пользуйтесь шпаргалкой.

  1. Следите, чтобы напряжение аккумулятора не опускалось ниже 2.00 V и не повышалось выше 3,70 V, идеальный диапазон не ниже 2,5V и не выше 3,65V.
  2. Если покупаете ячейки LiFePO4, не забудьте про защитную плату BMS.
  3. Понизьте напряжение аккумулятора, если пользуетесь им в буферном режиме. Рекомендуемые параметры от 3,4V до 3,45V.
  4. Заряжайте аккумулятор специальным зарядным устройством.
  5. Перед сборкой аккумулятора, отбалансируйте ячейки, чтобы выровнять напряжение.

Источник

Оцените статью