- Контроллер заряда АКБ – что это и для чего он нужен?
- Что такое контроллер заряда аккумулятора
- Функции
- Виды контроллеров
- Приборы On/Off
- Гибридные устройства
- Способы подключения
- Советы специалистов
- Микросхемы управления зарядом аккумуляторов компании ON Semiconductor
- Основные типы применяемых аккумуляторов
- MC33340/42 — контроль заряда NiCd и NiMH аккумуляторов
- NCP1835B — микросхема для заряда Li-Ion и Li-Pol аккумуляторов
- NCP349 и NCP360 — защита от перенапряжения с интегрированным MOSFET-транзистором
- Заключение
- устройство управления зарядом аккумулятора
- Формула изобретения
- Описание изобретения к патенту
Контроллер заряда АКБ – что это и для чего он нужен?
Контроллер заряда аккумулятора — это плата, которая защищает элемент питания от скачков напряжения, перезарядки или “глубокой разрядки”. Расскажем об особенностях таких устройств, их видах и способах подключения.
Что такое контроллер заряда аккумулятора
Контроллер заряда работает по разным принципам, что завит от типа батареи, к которой он подключен. В мобильных телефонах, смартфонах, планшетах, ноутбуках используют BMS-плату (микросхему) с распаянными электронными элементами на литий-ионном аккумуляторе. Если исключить плату защиты из цепи, то АКБ быстрее выйдет из строя или взорвется из-за нарушений правил эксплуатации.
В ветрогенераторах используют электронные блоки. Внешние контроллеры подключают к солнечным батареям. Последние выбирают исходя от типа аккумуляторов для накопления электрической энергии. Последние, зачастую представлены в свинцово-кислотном исполнении.
Функции
Контролеры созданы для:
- Наблюдения за процессом зарядки. При восстановлении емкости от 0 до 10% работает предварительное накопление емкости. От 10 до 70-80% происходит увеличение скорости наполнения постоянным током. Дозарядка проходит медленнее, из-за увеличившегося сопротивления в цепи.
- Регулировки просадок. Защищает электрическую цепь от короткого замыкания, просадок напряжения.
- Блокировки перезаряда. У каждой батареи есть лимит максимального напряжения (у Li-Ion он составляет около 4,2 В). Достигнув указанной цифры, питание автоматически отключается, препятствуя вздутию и взрыву АКБ.
- Защиты от глубокой разрядки. Если напряжение аккумулятора падает ниже критического значения (3 В в Li-Ion), происходит потеря номинальной емкости, уменьшается время автономной работы.
- Балансировки. Следит за равномерной зарядкой всех звеньев электросхемы, увеличивая срок службы элемента питания.
- Наблюдения за температурой. При перегреве или переохлаждении срабатывает терморезистор, который отключает питание, поданное на батарею.
Все параметры задают микросхеме или контролеру на этапе производства.
Виды контроллеров
Принцип зарядки батареи зависит от установленного оборудования. Нижеперечисленные контроллеры используют для солнечных батарей, аналогичные устройства применяют и в других сферах восполняемого электричества.
Приборы On/Off
Устройство начального сегмента, которое отключает подачу питания после достижения аккумулятором максимального напряжения. Это защищает батарею от перегрева, перезарядки.
Срабатывает “защита”, когда восстановлено 70-85% емкости — пик напряжения. Далее, ток должен уменьшиться и зарядить АКБ до 100% за 1-3 часа, но этого не происходит из-за особенностей прибора. Как итог, постоянная недозарядка уменьшает срок эксплуатации и емкость аккумулятора.
Контроллер носит второе название ШИМ и работает по принципу широтно-импульсной модуляции тока. По аналогии с печатной платой в смартфонах, где установлены литейно-ионные источники питания, устройство понижает входящее напряжение по достижению его пика и доводит зарядку до 100%.
Стоит устройство выше предыдущего варианта, но позволяет сохранить “резервуары для энергии”.
В прибор заложены алгоритмы для замеров тока и напряжения системы энергоснабжения и определения оптимального соотношения параметров для стабильной работы подключенной станции.
Согласно статистике, MPPT на 35% продуктивнее распределяют энергию, полученную с внешнего источника питания, нежели PWM-варианты. Учитывая стоимость девайса, его принято использовать для автоматизации “солнечных ферм”. Из-за сниженной стоимости, в частных домах практичнее использовать ШИМ.
Гибридные устройства
Такие контроллеры совмещают особенности PWM и MPPT. Их используют для распределения энергии, полученной с ветрогенераторов, которые совмещают с солнечными панелями. Главным отличием от обычных моделей являются вольтамперные параметры.
Способы подключения
Подключение завит от типа устройства.
Специально для пользователей, рядом с клеммами есть обозначения, что к ним подключать. Необходимо учесть строгую последовательность:
1. Подключите аккумулятор.
2. Включите предохранитель на плате, рядом с «+».
3. Вставьте контакты солнечных батарей.
4. Подсоедините контрольную лампу с напряжением 12 или 24 В.
Подключение заметно отличается от ШИМ:
- Солнечную панель подключают к инвертору.
- От него плюс заводят в прибор. На минусовой кабель ставят предохранитель.
- Ко второму плюсу и минусу подключают АКБ с использованием предохранителей.
- Инвертор и контроллер подключают к заземлению.
Последовательность и тип подключения будет незначительно отличаться:
- Переведите клеммы в неактивное положение.
- Достаньте предохранители.
- Подсоедините батареи.
- Подключите солнечные батареи.
- Позаботьтесь о заземлении.
- Добавьте в цепь датчик температуры.
- Верните предохранители, активируйте клеммы.
Советы специалистов
Выбор контроллера зависит от сценария использования, напряжения батарей и химического состава АКБ. При ограниченном бюджете делают ставку на PWM. Для поддержания солнечной фермы используют MPPT.
Контроллером заряда аккумулятора снабжают любые источника питания, защищая их от перегрева, перезаряда, недозаряда и потери емкости. Приборы бывают интегрированными или внешними. Последние используют при получении энергии от солнечных панелей или ветряных установок, дополнительно задействуя инвертор.
Источник
Микросхемы управления зарядом аккумуляторов компании ON Semiconductor
Интегральные схемы управления питанием от ON Semiconductor (ONS) уже хорошо известны отечественным разработчикам. Это AC/DC-преобразователи и ШИМ-контроллеры, корректоры коэффициента мощности, DC/DC-преобразователи и, конечно, линейные регуляторы. Однако практически ни одно портативное устройство не может обойтись без аккумулятора и, соответственно, без микросхем для его заряда и защиты. Компания ONS имеет в линейке продукции ряд решений для управления зарядом аккумуляторов, которые традиционно для ONS сочетают достаточную функциональность с невысокой стоимостью и простотой применения.
Основные типы применяемых аккумуляторов
В современной электронике наиболее распространены NiCd/NiMH и Li-Ion/Li-Pol аккумуляторы. Каждый из них обладает своими преимуществами и недостатками. Никель-кадмиевые (NiCd) аккумуляторы дешевы, а также имеют самое большое количество циклов разряда/заряда и большое значение нагрузочного тока. Основными недостатками являются: высокий саморазряд, а также «эффект памяти», который приводит к частичной потере емкости при частом заряде не до конца разряженного аккумулятора.
Никель-металлогидридные (NiMH) аккумуляторы — это попытка устранения недостатков NiCd, в частности «эффекта памяти». Данные аккумуляторы менее критичны к заряду после неполной разрядки и практически в два раза превосходят NiCd по величине удельной емкости. Не обошлось и без потерь, NiMH аккумуляторы обладают меньшим числом циклов разряд/заряд и более высоким саморазрядом по сравнению с NiCd.
Литий-ионные (Li-Ion) аккумуляторы обладают самой высокой плотностью энергии, что позволяет им превосходить другие типы аккумуляторов по величине емкости при тех же габаритных размерах. Низкий саморазряд и отсутствие «эффекта памяти» делают этот тип аккумуляторов неприхотливым в использовании. Однако для обеспечения безопасности использования литий-ионные аккумуляторы требуют применения технологий и конструктивных решений (полиолефиновые пористые пленки для изоляции положительного и отрицательного электродов, наличие терморезистора и предохранительного клапана для сброса избыточного давления), которые приводят к увеличению стоимости аккумуляторов на основе лития по сравнению с другими элементами питания.
Литий-полимерные (Li-Pol) аккумуляторы — это попытка решить проблему безопасности аккумуляторов на основе лития путем использования твердого сухого электролита вместо электролита в виде геля в Li-Ion. Такое решение позволяет получить схожие с Li-Ion аккумуляторами характеристики при меньшей стоимости. Помимо повышенной безопасности, использование твердого электролита позволяет уменьшить толщину аккумулятора (до 1,5 мм). Единственным недостатком по сравнению с Li-Ion аккумуляторами является менее широкий диапазон рабочих температур, в частности Li-Pol аккумуляторы не рекомендуется заряжать при минусовых температурах.
MC33340/42 — контроль заряда NiCd и NiMH аккумуляторов
В современных портативных приложениях требуется максимально быстрый заряд аккумулятора, предотвращение перезаряда, максимальный срок службы и предотвращение потери емкости. MC33340 и MC33342 — контроллеры заряда от ON Semiconductor, которые сочетают в себе все, что необходимо для быстрого заряда и защиты NiCd и NiMH аккумуляторов.
Контроллеры МС33340/42 реализуют:
- быстрый заряд и «капельную» подзарядку (trickle charge);
- окончание зарядки по изменению напряжения и температуры;
- детектирование одноразовых батарей и отказ от их зарядки;
- программируемое время быстрой зарядки от одного до четырех часов;
- детектирование перезаряда и недозаряда батареи, перегрева и перенапряжения по входу;
- паузу перед отключением зарядки при детектировании по изменению напряжения (177 с для MC33340 и 708 с для MC33342).
Данные контроллеры в сочетании с внешним линейным или импульсным преобразователем образуют законченную систему для зарядки аккумуляторов. Пример такой зарядной схемы с использованием классического стабилизатора LM317 показан на рис. 1.
Рис. 1. Схема включения MC33340 и MC33342
LM317 в данной схеме работает как стабилизированный источник тока с установкой зарядного тока резистором R7:
Ichg(fast) = (Vref + IadjR8)/R7. Ток капельной подзарядки устанавливается резистором R5:
Ichg(trickle) = (Vin — Vf(D3) — Vbatt)/R5. Делитель R2/R1 должен быть рассчитан таким образом, чтобы при полном заряде аккумулятора на входе Vsen было меньше 2 В:
С помощью выводов t1, t2, t3 трехбитной логикой (ключами на схеме) устанавливается либо время заряда 71…283 мин, либо верхний и нижний пределы детектирования температуры.
На основе представленной схемы компания ON Semiconductor предлагает отладочные платы MC33340EVB и MC33342EVB.
NCP1835B — микросхема для заряда Li-Ion и Li-Pol аккумуляторов
Литиевые аккумуляторы требуют высокой стабильности зарядного напряжения, например, для аккумулятора LIR14500 от компании EEMB зарядное напряжение должно находиться в пределах 4,2±0,05 В. Для заряда аккумуляторов на основе лития ONS предлагает полностью интегрированное решение — NCP1835B. Это микросхема заряда с линейным регулятором, профилем заряда CCCV (constant current, constant voltage) и зарядным током 30…300 мА. Питание NCP1835B может осуществляться либо от стандартного AC/DC-адаптера, либо от USB-порта. Вариант схемы включения представлен на рис. 2.
Рис. 2. Схема для отладки NCP1835B
Основные характеристики:
- интегрированный стабилизатор тока и напряжения;
- возможность зарядки полностью разряженной батареи (током 30мА);
- определение окончания зарядки;
- программируемый зарядный ток;
- выходы статуса и ошибки зарядки;
- выход 2,8В для определения присутствия адаптера на входе или питания микроконтроллера током до 2мА;
- входное напряжение от 2,8 до 6,5В;
- защита от продолжительного заряда (программируемое максимальное время заряда 6,6…784 мин).
NCP349 и NCP360 — защита
от перенапряжения с интегрированным
MOSFET-транзистором
Еще одним важным моментом в системах заряда аккумуляторов является защита от превышения допустимого входного напряжения. Решения, предлагаемые ONS, отключают выход от целевой схемы в случае присутствия на входе недопустимого напряжения.
NCP349 — новинка от ONS, которая защищает от перенапряжения по входу до 28 В. Микросхема отключает выход при превышении верхнего порога входным напряжением или если нижний порог не достигнут. Также предусмотрен выход FLAG# для сигнализации перенапряжения на входе. Типовая схема применения показана на рис. 3.
Рис. 3. Схема применения NCP349
Данная микросхема доступна с различными нижними (2,95 и 3,25 В) и верхними (5,68; 6,02; 6,4; 6,85 В) порогами срабатывания, которые закодированы в наименовании. NCP360 обладает такой же функциональностью, что и NCP349, за исключением максимального напряжения на входе: 20 В.
Заключение
Компания ON Semiconductor по сравнению с конкурентами обладает не очень широкой линейкой микросхем для заряда аккумуляторов. Однако представленные решения в своем сегменте характеризуются конкурентоспособными характеристиками и ценой, а также простотой применения.
Источник
устройство управления зарядом аккумулятора
Классы МПК: | H02J7/00 Схемы зарядки или деполяризации батарей; схемы питания сетей от батарей H02J9/06 с автоматическим переключением |
Автор(ы): | |
Патентообладатель(и): | Общество с ограниченной ответственностью «Конструкторское бюро пожарной автоматики» (RU) |
Приоритеты: |