Устройства для заряда аккумуляторов usb

Как выбрать сетевое зарядное устройство

Большинство современных мобильных устройств питаются от аккумуляторов, для зарядки которых используются сетевые зарядные устройства. И хотя к большинству гаджетов ЗУ идут в комплекте, необходимость в покупке еще одной зарядки возникает не так уж и редко: штатная зарядка может потеряться или сломаться, а некоторые гаджеты вообще не имеют ЗУ в комплекте. Однако по какой бы причине вам ни понадобилось новое сетевое зарядное устройство, следует иметь в виду, что «подходящего» к гаджету разъема ЗУ недостаточно. Следует убедиться, что остальные характеристики зарядки также соответствуют параметрам заряжаемого устройства.

Характеристики сетевых зарядных устройств

Разъем подключения — первое, что определяет совместимость зарядного устройства с заряжаемым. К счастью, времена, когда каждый производитель снабжал свои гаджеты уникальным разъемом, потихоньку уходят в прошлое, и большинство современных устройств используют разъем USB или его варианты — mini USB, micro USB, USB Type-C. ЗУ для таких гаджетов, как правило, имеют разъем USB и — по необходимости — съемный кабель в комплекте, являющийся переходником на другие разъемы того же стандарта. Хотя встречаются и зарядки с разъемом типа micro USB или USB Type-C на корпусе или на несъемном кабеле — но никакого преимущества это им не дает, наоборот, делает их менее универсальными.

Встречаются зарядные устройства с несколькими разъемами USB — от двух до восьми. Такими можно заряжать несколько устройств одновременно, но имейте в виду, что выходной ток на порт в этом случае может быть меньше суммарного максимального выходного тока. Если подключить к ЗУ с максимальным выходным током в 1000 мА два устройства, заряжающиеся таким током, оба они «получат» только по 500 мА (даже если для него заявлен выходной ток на порт в те же 1000 мА) и будут заряжаться вдвое дольше. Выходной ток на порт может быть равен максимальному, только когда к нему подключено лишь одно устройство, «забирающее» максимальный ток.

Читайте также:  Как зарядить алкалиновые аккумуляторы

Из остальных распространенных разъемов можно отметить разве только 8-pin Lightning, использующийся на мобильных устройствах Apple с 2012 года.

При желании еще можно найти зарядные устройства для старых гаджетов — 20-pin разъемы для смартфонов Samsung, 30-pin разъемы для гаджетов Apple до 2012 года, 18-pin разъемы для смартфонов LG и так далее, но выбор их невелик, и в скором времени следует ожидать их полного исчезновения с полок магазинов.

Также встречаются ЗУ с цилиндрическими разъемами типа DJK или jack, такие разъемы питания используются во множестве различной электроаппаратуры. Особенность подбора такого зарядного устройства в том, что общепринятого стандарта у них нет, каждое устройство, использующее такой разъем, может иметь различные параметры зарядки, которые следует тщательно соблюсти. При покупке ЗУ с таким разъемом следует убедиться, что расположение полюсов, сила тока и напряжение на нем в точности соответствуют указанным в руководстве по эксплуатации заряжаемого устройства (или хотя бы на его корпусе). Несоблюдение этого требования может привести к выходу из строя как зарядки, так и заряжаемого гаджета.

Сила тока у зарядного устройства с разъемом lightning может быть любой — все устройства Apple снабжены контроллером заряда и просто не возьмут ток больший, чем необходимо. Другое дело, что ток меньший, чем может потреблять устройство, увеличит время зарядки. И к примеру, iPad mini 1-го поколения, заряжающийся током 0,15 А, можно заряжать и от ЗУ с выходным током 2,4 А — на процесс зарядки это не повлияет. Обычный iPad от «телефонной» зарядки с выходным током 1 А тоже будет заряжаться — но вдвое дольше обычного. Различные устройства Apple могут заряжаться токами от 0,15 до 2,4 А.

То же относится и к зарядным устройствам с разъемом USB — контроллер заряда смартфона защитит его при подключении к слишком мощному ЗУ. В обратном случае — при подключении к «слабой» зарядке устройства, способного заряжаться высоким током — время зарядки возрастет.

Грубо говоря, и с портом Lightning, и с портом USB зарядное устройство для смартфона лучше брать с током хотя бы от 2 А. Многие современные смартфоны могут заряжаться током в 3 А, а гаджеты покрупнее спокойно «берут» 4-5 А. Большинство прочих устройств, заряжаемых от USB, также имеют контроллер зарядки и «не боятся» высоких токов, однако для полной уверенности лучше все же свериться с руководством по эксплуатации и не заряжать током выше указанного в нём.

Напряжение на круглом разъеме типа DJK или jack может быть разным и должно соответствовать требованиям заряжаемого устройства.

А вот с разъемами Lightning и USB всё сложнее. Стандартное напряжение для этих разъемов — 5 В. Однако в интеллектуальных режимах быстрой зарядки напряжение может подниматься до 20 В. Происходит это автоматически, без участия пользователя: контроллер заряжаемого устройства, используя протокол быстрой зарядки, устанавливает на зарядном устройстве нужный режим. Это позволяет сократить время зарядки в несколько раз и производители утверждают, что такие режимы не приводят к сильному сокращению срока службы аккумуляторов.

Проблема в том, что некоторые кабели не являются просто «кусками меди» — в них встроены согласующие резисторы (кабели USB 2 — USB Type-C), а иногда и управляющие микросхемы (кабели Lightning, USB 3.1). Поэтому категорически рекомендуется для режимов быстрой зарядки использовать только «родные» кабели, идущие в комплекте с устройством. Использование непроверенных кабелей для быстрой зарядки может привести к повреждению как кабеля, так и зарядного устройства или самого смартфона.

Существует множество стандартов быстрой зарядки, и для их работы необходимо, чтобы и ЗУ, и заряжаемое устройство поддерживали один стандарт. Поэтому, если вы планируете применять приобретаемое зарядное устройство для быстрой зарядки гаджета, убедитесь, что оно поддерживает нужный стандарт:

  • Adaptive Fast Charging применяется для зарядки гаджетов компании Samsung с 2015 года. Используется, в основном, в топовых моделях линеек S, Note, A и некоторых других;
  • Huawei Fast Charge и Huawei Super Charge, как видно из названия стандарта, применяется на устройствах Huawei;
  • Pump Express разработан компанией MediaTek и поддерживается современными смартфонами, собранными на базе SoC этого производителя — к таковым относятся многие китайские смартфоны;
  • Quick Charge — стандарт компании Qualcomm, поддерживается устройствами, собранными на базе чипсетов Snapdragon, начиная с 2013 года.
  • Spreadtrum Fast Charge Protocol, соответственно, поддерживается на чипсетах Spreadtrum.
  • Power Delivery — наиболее перспективный протокол быстрой зарядки, разработанный консорциумом USB в 2015 году. На настоящий момент используется гаджетами Apple, Xiaomi, Sony и др. Quick Charge версии 4.0 также полностью совместим с Power Delivery.
  • VoltiQ — «урезанный» стандарт Quick Charge, позволяющий менять только ток зарядки (но не напряжение). Стандарт поддерживается производителем зарядок Tronsmart и был разработан в 2014 году для устранения перегрева первых смартфонов, использующих стандарт Quick Charge 2.0. Зарядка с использованием VoltiQ чуть медленнее, чем с QuickCharge, но безопаснее для старых смартфонов (особенно на базе Snapdragon 810).

Варианты выбора сетевых зарядных устройств

Зарядное устройство с разъемом USB — наиболее универсальный вид «зарядок» на сегодняшний день — большинство мобильных устройств либо могут заряжаться от этого разъема, либо имеют переходник на него.

Зарядные устройства с разъемом Lightning предназначены для зарядки гаджетов Apple.

Если вы хотите заряжать одновременно несколько устройств, выбирайте среди ЗУ с несколькими портами.

Чтобы ускорить зарядку гаджета, воспользуйтесь ЗУ с поддержкой быстрой зарядки — только убедитесь, что ваш гаджет поддерживает тот же стандарт и используйте «родной» кабель.

Для зарядки гаджетов с аккумуляторами большой емкости (планшетов, ноутбуков) выбирайте среди ЗУ большой мощности — они способны «давать» большой ток и напряжение.

Источник

Зарядка аккумулятора с помощью USB: роль детектора типа зарядного устройства

С использованием интегральных микросхем детектора заряда разъем USB становится универсальным компонентом для портативных устройств. Соблюдение спецификации BC1.2 (BC1.2 – Battery Charging Revision 1.2 – спецификация зарядного устройства аккумуляторной батареи вариант 1.2) обеспечивает ясность и простоту реализации технологии. Обилие возможностей интегральных схем детектора заряда делает их чрезвычайно привлекательными при разработке портативной электроники. Компания Maxim Integrated предлагает многофункциональные детекторы зарядного устройства MAX14576/MAX14636/MAX14637 и MAX14656.

Что, кроме обильных порций кофе, помогает уменьшить время выхода продукции на рынок, снизить стоимость, сконцентрироваться на циклах разработки инноваций? Подсказка: стандартизация. Стандарты, определяющие протоколы и эксплуатационные характеристики, повлияли на все аспекты технологии: размеры корпуса устройства, расположение выводов, информационные и коммуникационные интерфейсы, драйвера программного обеспечения, разъемы, способ распространения программного продукта, соблюдение экологических норм, испытательные приспособления. Этот список можно продолжать без конца. Чем подробнее описание, тем лучше оснащены разработчики для определения продуктов, которые следует вывести на рынок. Если есть какие-либо сомнения по поводу необходимости строго оговоренных стандартов, отправляйтесь в два любых магазина одежды и купите рубашки с одним и тем же размером.

Лучшие стандарты растут вместе с технологией. Стандарты пересматриваются, и затем в них отражается усложнение промышленности, в то время как необходимо поддерживать уже укоренившуюся практику. USB порт – прекрасный пример универсального стандарта. Первоначально предполагалось стандартизировать разъемы на ведущем компьютере, затем была расширена спецификация USB с разрешением горячей замены электроники (стандарт USB-OTG – “On the Go”) как для ведущего, так и для периферийного устройства. Спецификация снова эволюционировала с введением «Спецификации зарядки аккумуляторной батареи с помощью USB» [USB Battery Charging Specification, 1], отразившим невероятный бум мобильных телефонов и других портативных устройств с портом USB. В настоящее время стандарт USB проходит очередной виток эволюции с новой спецификацией USB 3.1 с инновационным симметричным разъемом типа С. Из-за способности идти в ногу со временем [2], порт USB в настоящее время можно найти повсеместно, где используются заряжаемые устройства.

Поддержка такого устойчивого стандарта, как USB, может влиять даже на политику правительства. В июне 2009 Европейская Комиссия опубликовала памятку, предполагающую разрешить использование универсального зарядного устройства для каждого мобильного телефона, который имеет разъем микро-USB и опирается в значительной степени на ВС1.2. [3] В ответ крупнейшими производителями мобильной электроники, такими как Apple, LG, Samsung и Sony Ericsson, а также многими другими [4] был подписан меморандум о взаимопонимании (MoU – memorandum of understanding). Ассоциация GSM (GSMA), которая организует мировой мобильный конгресс (Mobile World Congress) и охватывает более 220 стран, также анонсировала намерение стандартизировать зарядное устройство мобильных телефонов с USB-разъемом [5]. Корейская ассоциация телекоммуникационных технологий (Korean Telecommunications Technology Association) и китайское министерство промышленности и информационных технологий (Chinese Ministry of Industry and Information Technology) выпустили технические требования к стандартизации зарядного устройства мобильного телефона [6]. Даже международный телекоммуникационный союз (International Telecommunication Union), специализированное учреждение в рамках Организации Объединенных Наций, опубликовал ITU-T L.1000 – рекомендации к адаптации универсального зарядного устройства на основе предложений GSMA, Евросоюза и Китая [7]. Обновление USB 2.0, в которое добавлены положения о передачи энергии, введение стандарта USB 3.1 в 2013 году и нового стандартного разъема Type-C в 2014 году будут продолжать оказывать сильное влияние на стандарты USB.

Детектор зарядного устройства и порты в BC1.2

Почему комитеты по стандартам и правительство выбрало для унификации USB разъем и протоколы, изложенные в BC1.2? Создание общего стандарта позволит добиться совместимости, оптимальной производительности, безопасности любых устройств, использующих USB. Спецификация оговаривает, сколько мощности может передать любой порт, а также указывает рациональный путь определения количества переданной энергии для портативных устройств. Таким образом, разработчик любого портативного оборудования может обеспечить совместимость с как можно большим числом USB. Производители будут знать, как наилучшим образом применять USB, и могут предвидеть значения напряжений и токов, прилагаемых к USB. Учитывая эти данные, можно осуществлять проектирование без риска электрических перегрузок. Наконец, возрастающее значение тока заряда, используемого устройством, значительно сокращает требуемое для процесса заряда время. Следовательно, детектор зарядного устройства – важная особенность, которая должна быть заложена во всех заряжаемых устройствах, использующих порт USB.

Прежде чем обсуждать протокол обнаружения устройств, важно знать различия среди существующих спецификаций USB. Наиболее распространенная спецификация USB 2.0 поддерживает ток заряда не более 500 мА. ВС1.2 оговаривает три различных типа портов: стандартный порт для обмена (SDP – standard downstream port), выделенный порт для заряда (DCP – dedicated charging port) и порт для обмена и заряда (CDP – charging downstream port).

SDP – классический USB-порт. В дополнение к коммуникации USB обеспечивает ток 100 мА для периферийных подключенных устройств, причем ток может быть увеличен до 500 мА. Большинство портов, как правило, не имеют этого предела тока, и большие токи не гарантируются. DCP не поддерживает обмен данными, но обеспечивает зарядный ток 500 мА без распознавания порта. CDP поддерживает обмен данными USB и высокий ток заряда; присутствует внутренняя схема, которая переключается на этапе определения заряжаемого устройства. Некоторые производители электроники разработали свои собственные схемы идентификации зарядного устройства в дополнение к типам USB-портов, указанных в спецификации. Вариации этих схем добавляют еще один слой технологии обнаружения зарядного устройства, который нельзя упускать из вида.

Процесс определения зарядного устройства

Процесс определения зарядного устройства, согласно спецификации BC1.2, состоит из пяти базовых этапов:

Рис. 1. Контакты разъема USB и обнаружение
данных соединения

Определение VBUS. Для обеспечения правильного согласования любых возможных подключенных устройств и USB-порта, выводы VBUS и GND на разъеме должны быть длиннее, чем выводы D+ и D-. Это гарантирует необходимую последовательность соединения контактов (см. рисунок 1). Таким образом, перед тем, как произойдет распознавание, устройство должно сначала проконтролировать наличие VBUS.

  • Обнаружение данных соединения (DCD – data contact detection). Как только валидация VBUS завершена, портативному устройству (ПУ) необходимо гарантировать соединение контактов данных перед тем, как начнется обнаружение. ПУ может неправильно определить наличие зарядного устройства, если решение было преждевременным, то есть до образования соединения контактов данных.
  • Для выполнения DCD периферийное устройство должно подключить источник тока величиной от 7 до 13 мкА (опорное напряжение 3,3 В) к D+ и проконтролировать напряжение. Этот диапазон тока выбран таким образом, чтобы поддерживать необходимый уровень напряжения для всех логических элементов при допустимом отклонении величин сопротивлений, оговоренных в спецификации. Если D+ не подключен, напряжение будет иметь высокий логический уровень. Если подключен, то на D+ будет считываться низкий логический уровень, несмотря на тип порта. Если соединение с контактами данных не терялось после односекундного таймаута, конечное устройство предполагает, что DCD состоялось.

    1. Первичное определение зарядного устройства. На этом этапе конечное устройство различает типы портов с возможностью тока заряда более 500 мА (CDP и DCP) или менее 500 мА (SDP). После отключения источника тока фазы DCD конечное устройство подключает источник напряжения от 0,5 до 0,7 В на D+ и подает ток от 25 до 175 мкA на D-. Если в данный момент выполняется режим DCP или CDP, то на D- появится уровень от 0,5 до 0,7 В. Если SDP, то напряжение на D- снизится до нуля. Компараторы конечного устройства сравнивают напряжение D- с уровнем от 0,25 до 0,4 В. Если напряжение D- выше 0,4 В , но ниже чем логический низкий уровень 0,8 В, то конечное устройство делает вывод о том, что представлен порт зарядного устройства.
    2. Вторичное определение зарядного устройства. После отключения источника напряжения и тока из предыдущего шага конечное устройство должно отличить CDP от DCP. Для достижения этой цели выполняется предыдущий тест в обратном порядке. То есть, на D- подключается источник напряжения 0,5…0,7 В и на D+ подается ток 50 мкA. Если выполняется режим DCP, то на D+ появится тестовое напряжение от 0,5 до 0,7 В. Если CDP, то на D+ напряжение будет нулевым.
    3. CDP: ограничение зарядного тока. Так как CDP поддерживает и обмен данными, и заряд высоким током, то необходимо отметить последнее различие. Ввиду большого значения протекающего в USB-кабеле тока, разница между землей хоста и землей подключенного устройства должна быть ограничена на допустимом уровне смещения не более 375 мВ.

    Логическая схема процедуры определения типа зарядного устройства приведена на рисунке 2.

    Рис. 2. Обобщенная процедура определения зарядного устройства в соответствии со спецификацией BC1.2

    Зарядные устройства, не совместимые с ВС1.2, отличаются у разных производителей. Многие из зарядных устройств собственной разработки идентифицируют себя для конечного устройства посредством уровня напряжения, получаемого резистивным делителем между шиной VBUS и землей. В зависимости от уровня отклонения, требуемого схемой обнаружения зарядного устройства, может быть добавлен контур чувствительности для обнаружения уровней напряжений на D + и D-, и таким образом становится возможным идентифицировать различные зарядные спецификации производителя.

    Технология определения зарядного устройства

    Интегральная схема обнаружения USB-зарядного устройства – это микросхема, которая реализует многие функции и тонкости, связанные с определением зарядного устройства в соответствии со спецификацией ВС1.2. Также возможно реализовать схему определения на дискретных элементах. Однако количество компонентов, место на печатной плате и время, потраченное на создание дискретной системы, резко возрастает.

    Добавление специальной микросхемы для определения устройства заряда требует дополнительного места на печатной плате, поэтому производители часто сочетают другие необходимые или желательные функции в одном корпусе. Следовательно, микросхема определения зарядного устройства высокой степени интеграции обладает множеством дополнительных функций, таких как встроенные ключи для работы USB или UART/аудио, последовательные интерфейсы управления, защита от перенапряжения (OVP – overvoltage protection), поддержка USB OTG, возможность заряда Li+ батарей или даже способность нумерации USB.

    Разработчики, подбирающие детектор зарядного устройства, который можно установить в уже существующий продукт с минимальным количеством дополнительных компонентов и местом на печатной плате, должны заинтересоваться семейством микросхем MAX14576/MAX14636/MAX14637. Этот класс детекторов зарядных устройств питается непосредственно от шины USB VBUS , так что нет необходимости организовывать дополнительный источник питания. Детекторы оснащены внутренними переключателями SPST, которые открываются, когда выполняется определение зарядного устройства, и закрываются, когда включена передача данных через USB. Каждое устройство имеет порты ввода/вывода с открытым коллектором для сигнализации статуса разрешения зарядки или передачи данных. Некоторые версии детектора зарядного устройства имеют совместимый с Apple® порт детектора зарядки в дополнение к спецификации BC1.2. На рисунке 3 показан пример схемы обнаружения, которая обрабатывает протокол детектирования. Для такой схемы требуется меньше ресурсов основного процессора, и нет необходимости в серьезных изменениях в существующем проекте.

    Рис. 3. Схема включения детектора зарядки MAX14636

    За последние несколько лет произошел лавинообразный рост на рынке смартфонов. Список их функционала продолжает увеличиваться, а габариты – уменьшаться. Тщательное планирование и использование высокоинтегрированных решений необходимы для сокращения спецификации. Так, например, мобильный телефон использует один разъем для зарядного устройства; подключения к персональному компьютеру; подключения внешних аксессуаров; воспроизведения аудио. Для осуществления всех этих задач в компактном исполнении системные разработчики могут применить микросхему определения заряда MAX14656 (рисунок 4).

    Рис. 4. Применение детектора заряда MAX14656 в смартфонах

    Эта универсальная схема детектора зарядного устройства автоматически определяет разницу между BC1.2-совместимыми портами и поддерживает определение Apple-совместимых зарядных устройств (то есть 500 мА, 1 А, 2,1 А). Эти устройства имеют интегрированные DPDT-переключатели, которые позволяют использовать шины D+ и D- для совместного использования высокоскоростным USB-приемопередатчиком, аудиовыходом и даже внутренним UART. Используя I2C-интерфейс, встроенный процессор читает, подключено ли зарядное устройство, и переконфигурирует внутренние ключи для соответствующего режима. Например, рассмотрим одиночный детектор зарядного устройства со встроенным OVP на шине VBUS, с защитой от электростатических разрядов на линии передачи данных и посадочным местом 1,65х1,65 мм. Данная микросхема добавит одиночному разъему гибкости применения в системах с ограниченными габаритами.

    Перспективы для устройств портативной электроники

    Технология определения зарядного устройства достаточно универсальна, так как основные функции детектора зарядного устройства могут быть использованы совместно с другими функциями для достижения высокой степени интеграции при разработке портативной электронной техники. Другие решения сочетают в одном корпусе детектор зарядного устройства с контроллером заряда Li+ аккумуляторных батарей. Некоторые комбинируют детектор зарядного усторойства и самонумерацию USB. Сегодня новые микросхемы детекторов зарядного устройства автоматически осуществляют мониторинг циклов заряда батареи в соответствии с BC1.2, вместо дополнительной загрузки встроенного процессора с ручной юстировкой суммарного тока, протекающего за определенный в спецификации временной интервал.

    Когда объединяются функции детектора зарядного устройства и заряда, получается интеллектуальное ключевое управление аккумуляторной батареей. Эта технология позволяет автоматически переключаться между аккумуляторной батареей и зарядным устройством, когда происходит процесс заряда. Следовательно, некоторые микросхемы детекторов зарядного устройства могут обеспечить как зарядку батареи, так и полный ток нагрузки. Устройства, которые поддерживают эти функции, снабжены также терморегулированием тока для защиты от опасных высоких температур, возникающих в результате одновременного заряда аккумулятора и обеспечения тока нагрузки. Благодаря интеграции детектора и зарядного устройства, системный разработчик может уделить больше внимания конечному применению продукта и меньше беспокоиться по поводу вопросов, связанных с процессом заряда.

    Тем временем спецификация USB BC1.2 продолжает стимулировать электронную промышленность, обеспечивая стандарт, который производители могут брать за основу. Большое количество BC1.2-совместимых зарядных устройств уже доступны, и со временем объемы будут только увеличиваться. Уже один этот факт делает применение разъема USB в портативном устройстве привлекательным вариантом. При использовании микросхемы обнаружения зарядного устройства разъем USB на портативном устройстве становится универсальным компонентом. Соблюдение спецификации BC1.2 поддерживает ясность и простоту в реализации технологии. При разработке компактного и портативного изделия применение микросхемы детектора зарядного устройства позволяет увеличить степень интеграции за счет обширного списка сопутствующих функций.

    Источник

    Оцените статью