- Солнечные панели для частного дома: поставь светло себе на службу
- Что это?
- Критерии выбора
- Структура домашней солнечной электростанции
- Зависимый от сети вариант (электростанция, ведомая сетью)
- Автономная схема
- Полуавтономная (гибридная) система
- Монокристаллические
- Поликристаллические модули
- Аморфные
- Остальные
- Мощность и количество
- Самые необычные альтернативные источники электроэнергии
- Энергия из морских волн
- Энергия из ДНК
- Респираторы с солнечными батареями
- Солнечные паруса
- «Бесконечная» энергия из воздуха
- Электричество из дерева
- Жидкое топливо из солнечной энергии
Солнечные панели для частного дома: поставь светло себе на службу
Использовать в частных домах и даже дачных домиках альтернативные источники энергии сегодня стало модной тенденцией. Впрочем, это достаточно практично и, как правило, выгодно. Первенство среди таких устройств получили солнечные панели для частного ома (солнечные батареи, солнечные электростанции). Связано это с ежегодным ростом (весьма солидным) производства, снижением цен, многочисленными наработками, упрощающими подбор оборудования и построение систем.
Что это?
Основу любой системы составляют солнечные панели. Они выполняют роль основного источника энергии и, зачастую, становятся наиболее дорогой составляющей.
От их взвешенного выбора зависит:
- производительность домашней электростанции;
- объемы и стоимость работ по монтажу и обслуживанию;
- цена покупки;
- характеристики остальных звеньев.
Критерии выбора
Единственным критерием при проектировании домашней электростанции и выборе оборудования для нее должна стать целесообразность.
Однако понятие это широкое, для его понимания потребуется учет многих факторов:
- Средней и максимальной потребляемой мощности.
- Производительности солнечных модулей.
- Наличия стационарной электросети и режима совместной с ней работы.
- Географического положения местности и климатических условий.
- Финансовых возможностей владельца дома.
Структура домашней солнечной электростанции
Определяется двумя основными положениями:
- Целью создания и использования.
- Работой совместно со стационарными электросетями.
Соответственно, рассматривать можно 3 варианта организации солнечного электроснабжения дома:
- Зависимый от электросети.
- Полуавтономный с резервированием.
- Полностью автономный.
Зависимый от сети вариант (электростанция, ведомая сетью)
Такая электростанция строится по простейшей схеме. В ее состав входят:
- Солнечные панели в качестве альтернативного источника энергии.
- Инвертор, преобразующий постоянное напряжение на выходе фотоэлементов в переменное напряжение для потребителей.
Гелиобатареи подключаются на вход инвертора. Его выход соединен с сетью (после счетчика). Основная особенность схемы – отсутствие промежуточных накопителей энергии (аккумуляторов) и устройства для их заряда.
При такой структуре приборы в доме потребляют электроэнергию от солнечных элементов через инвертор. Недостаток мощности восполняется сетью, и, наоборот, ее избыток (например, когда батареи работают в номинальном режиме, а потребители выключены), сбрасывается в сеть.
Достоинства такой схемы:
- Минимальная стоимость по сравнению с другими вариантами.
- Простота настройки и регулировки.
Есть у нее и серьезный недостаток – при отсутствии сетевого напряжения (во время отключения электроэнергии) система не работает.
Автономная схема
В этой системе отсутствует сеть, а электроснабжение дом полностью производится от солнечных батарей.
Такой функционал диктует схему построения:
- Источник энергии – солнечные панели.
- Накопитель (аккумулятор) – берет на себя питание потребителей, когда батареи не вырабатывают электроэнергию (например, в ночное время).
- Контроллер заряда аккумуляторов – устройств, управляющее зарядом накопителей и потребление энергии от фотопанелей.
- Инвертор, как и в предыдущем варианте, преобразующий постоянное напряжение в переменное.
Система работает следующим образом:
- При наличии освещения солнечные батареи вырабатывают энергию.
- Она поступает на вход контроллера, преобразующий ее параметры в нужные для заряда батарей. Аккумуляторы подключены к его выходу.
- К выходу контроллера и зажимам АКБ подключаются входные цепи инвертора. Он преобразует напряжение и подает питание в сеть дома (не путать с централизованной).
Таким образом, при включенных электроприборах они получают энергию непосредственно с солнечных панелей (через контроллер и инвертор), когда светит Солнце. Одновременно, если есть избыток мощности, заряжаются аккумуляторы. Когда солнечный источник не работает, АКБ отдают накопленную энергию (через инвертор) потребителям.
Однако за красивой картинкой обязательно скрываются «подводные камни»:
- Стоимость электростанции выходит весьма значительной.
- Если по каким-либо причинам наблюдается длительный перерыв в работе панелей (поверхность покрыта снегом в зимнее время, дождевые тучи на неделю закрыли Солнце и т.д.), запасенной в аккумуляторах энергии не хватит для работы потребителей.
Решить проблему поможет резервный источник электроэнергии. В вариантах полностью автономных систем его роль может выполнять ветро- или гидро-, дизельный или бензиновый генератор. При наличии сетевого ввода резервным источником выступит стационарная электросеть, а система превратиться в полуавтономную.
Полуавтономная (гибридная) система
Схема такой электростанции практически полностью повторяет предыдущую за единственным исключением – для заряда накопителей используется энергия не только от солнечных панелей, но и от сети. В этом случае контроллер, кроме управления зарядными процессами, получает дополнительную функцию.
В настройках контроллера можно задать приоритет источников:
- При выборе солнечных батарей работающие электроприборы будут, по возможности, запитаны от них, а от сети будут потребляться недостающая мощность и подзаряжаться аккумуляторы.
- При выборе сети до пороговой мощности будет работать стационарный источник, а дополнительную энергию обеспечат гелиопанели.
Монокристаллические
Такие батареи визуально выглядят как панели с сегментами глубокого черного цвета. Получили название за счет конструкции на основе монокристаллов кремния.
Самый существенный недостаток — строгая ориентировка оптических осей кристаллов, что требует точного позиционирования панелей для получения максимальной отдачи. По этой же причине монокристаллы не терпят затенения – генерация энергии значительно снижается.
В настоящий момент обладают самым высоким КПД преобразования – около 22%. При этом стоимость тоже наиболее высокая – порядка 0.9-1.1 доллара за 1 Вт генерируемой мощности.
Поликристаллические модули
Название такие батареи получили за счет размещения на подложке множества кремниевых кристаллов с хаотически ориентированными оптическими осями. Визуально такие модули отличаются синим цветом с «морозным» рисунком.
Естественно, такое расположение кристаллов вызвало потерю КПД преобразования – он находится на уроне 11-16%. Однако это же позволило увеличить эффективность работы при рассеянном свете, что в результате привело к созданию панелей, которые успешно конкурируют с монокристаллическими (при прочих равных, например, размерах) по мощности генерации. Более того, по цене они значительно выигрывают и обходятся в 0.7-0.9 доллара за 1 Вт.
Аморфные
Технология изготовления рабочего тела сходна с поликристаллическими, но в качестве основы выступает аморфный кремний (aSi). При КПД в пределах 8-11% отличаются высокой эффективностью работы в рассеянном свете, могут захватывать и инфракрасный диапазон. В результате обладают лучшей стоимостью – порядка 0.5-0.7 доллара за 1 Вт.
Кроме того, имеют солидное преимущество – гибкую основу. Это означает, что для монтажа не требуется жестких конструкций, материал легко клеится на поверхности любой формы.
Остальные
Модули, предлагаемые производителями, могут быть изготовлены и по другим технологиям:
- Микроморфные, отличаются высокой отдачей при рассеянном и инфракрасном излучении.
- Гибридные, использует несколько полупроводниковых материалов и обеспечивают высокий КПД преобразования (до 44%).
- Полимерные, гибкие с подложкой из полимерных материалов, абсолютные лидеры по стоимости.
Такие предложения следует тщательно изучать, некоторые из них могут оказаться намного выгоднее, чем лидирующие на рынке панели, выполненные по стандартным технологиям.
Вообще, монокристаллические панели можно рекомендовать для установки только жителям южных регионов. Остальным следует выбирать поликристаллы или панели по другим технологиям.
Мощность и количество
Определить, какое количество солнечных панелей необходимо, следует по средней и максимальной мощности потребления. Среднюю легко найти в счетах за электроэнергию – месячное потребление делится на количество дней в месяце. Максимальное находится суммированием мощностей всех имеющихся в доме электроприборов.
Кроме мощности потребителей необходимо учесть:
- Время работы солнечных батарей. Как правило, принимается равным 6 часам, соответственно, мощность генерации нужно кратно увеличить.
- Потери на преобразование при зарядке аккумуляторов и получении переменного напряжения на инверторе. С их учетом необходим запас по мощности не менее 30%.
- Пиковые токи. Например, при средней мощности стиральной машины 500 Вт при работе нагревателя может потребляться до 2 кВт. При пуске насосов или других двигателей, пусковые токи могут превосходить номинальные значения в 5-6 раз. Конечно, львиную долю примут на себя аккумуляторы, но запас модулей по току в 20-30% не помешает.
- Географию и погодные условия местности – коэффициент инсоляции. Найти его для зимнего и летнего времени можно в справочниках.
После расчета необходимой мощности генерации рассчитывается мощность, отдаваемая одной батареей:
Где:
- Кс – стандартный сезонный коэффициент, 0.5 для лета и 0.7 для зимы.
- Wn – мощность панели, заявленная производителем.
- Ki – коэффициент инсоляции, также берется для лета и зимы.
Рассчитанную необходимую мощность генерации делят на оба (летнее и зимнее) значения. Наибольшее из двух чисел будет минимальным количеством панелей, которые потребуются для электроснабжения дома.
Источник
Самые необычные альтернативные источники электроэнергии
Энергия из морских волн
В апреле 2021 года британская компания Mocean Energy представила Blue X — прототип установки, которая будет преобразовывать кинетическую энергию морских волн в электричество.
Принцип работы такой: установку помещают на поверхность воды, она качается на волнах и приводит в движение шарнир посередине. Тот в свою очередь запускает генератор, который вырабатывает электроэнергию и по кабелям перенаправляет ее на сушу.
Как это применять: по оценкам Mocean Energy, если использовать хотя бы 1% всей доступной энергии волн в мире, можно обеспечить электричеством 50 млн зданий. Для сравнения: в России насчитывается около 14 млн жилых домов.
Энергия из ДНК
Оказалось, что органические молекулы тоже преобразуют солнечную энергию в электричество. В 2021 году немецкие ученые сумели синтезировать супрамолекулярную — то есть более сложную, чем обычная молекула — систему на основе ДНК.
Основа системы — фуллерен, «футбольный мяч» из 60 атомов углерода. К нему крепится краситель, который поглощает солнечный свет и отдает получившуюся энергию фуллерену. Но возникает проблема: если не упорядочить такие супрамолекулы, ток между ними будет протекать с трудом, а со временем и вовсе затухнет.
Ученые предложили такое решение: закрепили супрамолекулы на основе фуллеренов и красителя на спирали ДНК. Так движения электронов становятся упорядоченными, а электрический ток не затухает.
Как это применять: исследователи не обещают, что в скором времени на всех крышах появятся солнечные батареи из ДНК, но развивать это направление планируют. По их прогнозам, технология будет дешевле, прочнее и долговечнее, чем солнечные батареи на основе кремния.
Респираторы с солнечными батареями
Берлинский изобретатель Хайнц Кнупске превратил респиратор в устройство, генерирующее электроэнергию. По сути, это привычная для нас маска, на поверхности которой закреплена маленькая солнечная батарея.
Как это применять: батарея вырабатывает энергию, которой хватает для подзарядки телефона или часов. В начале 2021 года в Китае уже наладили серийное производство «солнечных» масок и отправили первую партию в Европу.
Солнечные паруса
В 2019 году Планетарное общество развернуло парус LightSail 2 на одной из ракет от SpaceX, и он успешно прошел испытания.
Солнечный парус — почти то же самое, что и обычный парус на кораблях. Только в движение его приводит не ветер, а солнечная энергия — поток заряженных частиц, которые выделяет Солнце. Если поймать этот поток энергии, можно долгое время путешествовать в космосе по заданному маршруту, а топливо для этого не понадобится.
Как это применять: используя наработки Планетарного общества, в 2021 году NASA с помощью паруса планирует долететь до Луны, а затем отправиться к околоземному астероиду 1991 VG.
«Бесконечная» энергия из воздуха
В 2020 году ученые из Массачусетского университета создали Air-gen — генератор, который создает электричество с помощью натурального белка и влаги из воздуха.
С помощью протеобактерий Geobacter ученые выращивают белок, который может проводить ток. Из него делают пленку толщиной менее 10 микрон — в несколько раз тоньше, чем человеческий волос — и помещают между двумя электродами. Белок забирает влагу из воздуха и за счет тонких пор создает ток между электродами.
Лучшие результаты Air-gen показывает при влажности в 45%, но справляется и в засушливых регионах вроде Сахары. Генератор не зависит от погодных условий и работает даже в помещении.
Как это применять: пока мощности Air-gen хватает только для питания мелкой электроники. В скором времени ученые разработают версию для мобильных телефонов и смарт-часов, чтобы те никогда не разряжались. А если у исследователей получится совместить Air-gen с краской для стен, в домах появится бесконечный источник электроэнергии.
Электричество из дерева
Если сжать древесину, а потом вернуть в исходное состояние, она вырабатывает электрическое напряжение — правда, очень низкое. Ученые из Швейцарии провели несколько экспериментов и в 2021 году сумели превратить древесину в мини-генератор.
Исследователи изменили химический состав древесины. Они поместили ее в смесь перекиси водорода и уксусной кислоты, растворили один из компонентов древесной коры — лигнин — и оставили только целлюлозу. В результате древесина превратилась в «губку», которая после сжатия самостоятельно возвращается в исходную форму. По словам ученых, такая губка генерирует электрическое напряжение в 85 раз выше, чем обычное дерево.
Как это применять: пока исследователи проводят испытания получившегося материала. Они уже выяснили, что энергии 30 деревянных брусков длиной 1,5 см хватит для питания ЖК-дисплея.
Жидкое топливо из солнечной энергии
Сейчас электричество получают с помощью сжигания органического топлива, например угля и природного газа. У этого способа есть две проблемы: органическое топливо вредит экологии и когда-нибудь закончится. Это заставляет ученых искать замену органике.
С 2001 года китайские ученые пытались преобразовать солнечную энергию в жидкое топливо. Спустя 20 лет у них это получилось.
Исследователям удалось получить жидкий продукт с минимумом примесей — содержание метанола в нем достигает 99,5%. Для этого потребовалось три шага:
- превратить свет, полученный с помощью солнечных батарей, в энергию;
- с помощью этого электричества разложить воду на водород и кислород;
- соединить водород и оксид углерода и получить метанол.
Как это применять: в отличие от нефти и угля, это топливо сгорает чисто. Если у Китая получится сделать производство жидкого метанола массовым, углекислого газа в атмосфере станет намного меньше — на долю Китая приходится около 29% мировых выбросов.
Источник