У кого может образоваться аккумуляторы

Содержание
  1. История развития аккумуляторных батарей
  2. Первые эксперименты
  3. Современные свинцово-кислотные аккумуляторы
  4. Аккумуляторы по новым технологиям
  5. Будущее аккумуляторных батарей
  6. Как работает аккумулятор. Принцип работы аккумуляторной батареи (АКБ) простыми словами
  7. Понятие аккумулятор и его устройство
  8. Как работает аккумулятор (АКБ) при разряде
  9. Работа аккумулятора при заряде
  10. Способы соединения аккумуляторов (как работает аккумулятор)
  11. Параллельное соединение (как работает аккумулятор)
  12. Последовательное соединение (как работает аккумулятор)
  13. Компоновка АКБ
  14. Виды аккумуляторов
  15. Классификация АКБ по составу активного вещества
  16. Виды АКБ
  17. Классификация батарей по типу электролита
  18. Как работает аккумулятор — АКБ
  19. Материалы АКБ
  20. Пластины
  21. Сепараторы
  22. Литий-ионные аккумуляторы
  23. Электролит
  24. Гелевые электролиты
  25. Графен-полимерные аккумуляторы
  26. Основные технические характеристики аккумуляторов
  27. Номинальная емкость аккумулятора
  28. Пусковой ток
  29. Полярность
  30. Устройство корпуса
  31. Тип крепления аккумулятора
  32. Заключение

История развития аккумуляторных батарей

Если бы 2700 лет назад древнегреческий философ Фалес не обратил внимание на взаимодействие шерсти и янтаря, если бы в 1600 году не был введен термин «электричество», а в 1800 году Аллесандро Вольта не заинтересовался пластинами из цинка и меди, возможно современный мир был бы намного скучнее.

Первые эксперименты

Как известно, первые опыты, показавшие возможность аккумулировать, то есть скоплять электрическую энергию, были произведены вскоре после открытия итальянским ученым Вольтой явлений гальванического электричества. Желая понять природу электричества и в прямом смысле слова «почувствовать его вкус», Алессандро Вольта экспериментировал с монетами, изготовленными из разных металлов. Положив одну из них на язык, а другую под, и соединив их проволокой, Вольта отмечал присутствие характерного кисловатого привкуса. Так острота вкусовых рецепторов человека привела к открытию гальванического электричества.

В 1801 году французский физик Готеро, пропуская через воду посредством платиновых электродов ток, обнаружил, что после того, как ток через воду прерван, можно, соединив между собой электроды, получить кратковременный электрический ток.

Читайте также:  Ffclub форд фокус 2 аккумулятор

Ученый Риттер проделывал затем тот же опыт, употребляя вместо платиновых электродов электроды из золота, серебра и меди и, отделяя их друг от друга кусками сукна, пропитанными растворами солей, он получил первый вторичный, то есть способный отдавать запасенную в нем электрическую энергию, элемент.

Большое практическое усовершенствование в развитии аккумуляторов было внесено в 1859 году Гастоном Планте, который в результате длинного ряда опытов пришел к типу аккумулятора, состоящего из свинцовых пластин с большой поверхностью, которые при заряжении током покрывались окисью свинца, а, выделяя кислород и жидкость, отдавали электрический ток. Планте брал две полосы из листового свинца, прокладывал между ними полосы сукна и сворачивал полосы вокруг круглой палки. Затем получившийся сверток он стягивал резиновыми кольцами и ставил в сосуд с подкисленной водой. При многократном заряжании и разряжании такого аккумулятора на поверхности пластин образовывался активный действующий слой, который участвовал в процессе и придавал элементу большую емкость.

Современные свинцово-кислотные аккумуляторы

За всю историю развития свинцового аккумулятора принцип действия остался прежний. И сегодня при производстве свинцово-кислотных аккумуляторных батарей в корпус монтируют разнополярные электроды, разделенные сепаратором, заливают водный раствор серной кислоты (электролит) и соединяют однополярные электроды между собой с выводными борнами для подключения к источнику питания или зарядному устройству.

Но научно-технический прогресс не стоит на месте, а поэтому развитие и совершенствование получили конструктивные элементы свинцово-кислотных аккумуляторов. Прежде всего, это состав и конструкция электродов. Свинец мягкий материал, поэтому для придания прочности в сплав электродов малообслуживаемых батарей обычно добавляют сурьму, а для сокращения газовыделения в герметизированных аккумуляторах, где нет возможности восполнения уровня электролита – кальций.

Существуют различные сплавы электродов по составу. Тут может присутствовать, и селен, и олово, и даже серебро. По типу производят следующие типы электродов:

  • большой поверхности (электрод «Планте»);
  • трубчатый (панцирный);
  • стержневой;
  • намазной (решетчатый).

Каждый из этих типов монтируется в определенные серии аккумуляторных батарей в зависимости от условий эксплуатации. Это может быть и короткие режимы разрядов большими токами, и длительные разряды малыми токами и т.д.

Развитие получили и корпуса свинцовых аккумуляторов по материалу изготовления. В течение продолжительного времени корпус аккумуляторов изготавливался из дерева. Увы, реакции, происходящие в моменты окисления электродов, и кислотная среда батарей приводили к быстрому разрушению органической оболочки. Дерево заменили на эбонит – каучук с большим содержанием серы, обладающий высокими электроизоляционными свойствами. Сейчас корпуса изготовляют из полипропилена (РР), акрило-бутадиен-стирола (ABS) и стирол-акрил-нитрила (SAN). Всех их объединяет то, что они ударопрочные, различает степень огнестойкости, степень прозрачности материалов и состав синтетических добавок для придания стойкости к различным условиям эксплуатации.

Полюсные выводы также подверглись модернизации. Изготовляют их и в виде клеммного соединения, и конусного вида, и под различные диаметры болтов как внутреннего типа, так и под болты с гайкой, и сварного типа. Расположение также формируют в зависимости от размещения аккумуляторов на объектах: сверху, сбоку, с торца (так называемое фронт-терминальное исполнение).

Электролит тоже имеет различную плотность в зависимости от назначения аккумулятора. Для буферного режима эксплуатации он в пределах 1,24 кг/л, для циклического и стартерного, где идет повышенная нагрузка – в пределах 1,28 кг/л.

Но самое главное совершенство в конструкции получили разнообразие типов свинцово-кислотных аккумуляторов по типам герметизации. Сегодня в эксплуатации на объектах еще можно встретить так называемые обслуживаемые батареи (полностью открытые типы). В основном наибольшую популярность получили на объектах малообслуживаемые (заливные) аккумуляторы и герметизированные, которые, в свою очередь, разделяются на AGM-технологию со стекловолокнистым сепаратором и GEL-технологию, где электролит находится в загущенном состоянии.

Аккумуляторы по новым технологиям

Совершенствование конструкций свинцово-кислотных аккумуляторных батарей продолжается и сегодня. Например, в сплав электродов аккумуляторных батарей, выполненных по технологии AGM многие производители стали добавлять углеродный композит, называемый карбоном. Это позволило добиться снижения процесса сульфатации при частичном разряде, улучшения разрядных характеристик, увеличения цикличности использования, срока службы в буферном режиме и сроков хранения без подзаряда, сокращения сроков ускоренного заряда (повышенным напряжением) и уменьшения при этом тепловыделения.

При всех этих конструктивных отличиях общий принцип работы и протекания электрохимических процессов внутри батарей остается прежним.

Развитие индустрии аккумуляторных батарей движется настолько стремительно, что проследить за той чередой открытий, которые пришлись на последние пятьдесят лет практически невозможно. На сегодняшний день существует более 30 разновидностей аккумуляторов, при построении которых используются два различных электрода, чем и определяется их название. Сегодня на мировом рынке уже получили признание и такие типы аккумуляторных батарей, как никель-кадмиевые, никель-металл-гидридные, литий-ионные и другие. Ведутся и дальнейшие разработки в этом направлении. Имеются разработки по созданию литий-воздушных аккумуляторов (где в качестве окислителя используется кислород), литий-серных аккумуляторов (с электродами из серы и углерода), аккумуляторов с золотыми нанопроводниками (способные выдерживать до 200 тыс. циклов заряда-разряда), магниевых аккумуляторов (компания «Toyota»), твердотельных аккумуляторов (прототип суперконденсаторов), графеновых аккумуляторов (со сроками зарядки в пределах нескольких минут), натрий-ионных аккумуляторов (с использованием обычной соли), пенных аккумуляторов (на основе субстрата пенометалла – меди), алюминий-ионных аккумуляторов и эластичных (гибких носителей энергии) аккумуляторов.

Но, к сожалению, все эти разработки крайне медленно приближаются к коммерческому уровню поскольку все они пока не вышли в массовое производство, не доказали свои практические преимущества, а пробные партии имеют несравнимо высокую цену по сравнению с традиционными, проверенными временем, выпускаемых серийно промышленных образцов аккумуляторных батарей.

Будущее аккумуляторных батарей

Будущее автономного энергопитания во многом зависит от совершенствования аккумуляторов — они должны весить меньше, заряжаться быстрее и при этом производить больше энергии.

Поэтому пройдет еще немало времени, прежде чем сотовые телефоны смогут «жить» месяцами, электромобили проезжать тысячи километров на одной подзарядке аккумуляторной батареи, а дома хранить достаточно энергии, получаемой от солнечных батарей или других альтернативных источников энергии для того, чтобы отказаться от традиционной электроэнергетики.

Оставьте свои контактные данные, и наши специалисты свяжутся с вами, для консультации или оформления заказа

Источник

Как работает аккумулятор. Принцип работы аккумуляторной батареи (АКБ) простыми словами

Аккумулятор или сокращённо (АКБ), это основное и необходимое устройство в любом автомобиле. Каждый водитель знает, что серце его машины — это конечно же аккумулятор, и нет таких машин с двигателем внутреннего сгорания, где бы его не было. Как бы это устройство не менялось за 150 лет с момента его изобретения, принцип работы аккумуляторной батареи остался низменным. Однако, современность внесла серьёзные коррективы в технологические процессы их изготовления. В этой статье вы ознакомитесь с и используемыми материалами, из чего состоит аккумулятор и как он работает. Итак, как работает аккумулятор (АКБ)?

Понятие аккумулятор и его устройство

В общем понимании этого слова в технике под термином «Аккумулятор» подразумевается устройство, позволяющие при разных условиях эксплуатации накапливать определенный вид энергии, либо же — расходовать ее для человеческих нужд.

Применимы в тех ситуациях, когда необходимо собрать энергию за определенное время, после чего использовать ее для совершения больших трудоемких процессов. Так — гидравлические аккумуляторы, используемые в шлюзах, позволяют поднимать корабли на новый уровень русла реки.

Электрические аккумуляторы работают с электроэнергией по такому же принципу: когда вначале накапливают (аккумулируют) электричество от внешнего источника заряда, а после отдают его подключенным приборам для совершения дальнейшей работы. По своей природе они относятся к химическим источникам тока, способным совершать много раз периодические циклы разряда и заряда.

В процессе работы постоянно происходят химические реакции между компонентами электродных пластин с заполняющим их веществом — электролитом.

Узнайте больше о самовозобновляемой и бесплатной энергии будущего. Солнечные батареи в действии.

На рисунке ниже изображена схема устройства аккумулятора. Изображен тот вид, когда в корпус сосуда вставлены две пластины из разнородных металлов с выводами для обеспечения электрических контактов. Между пластинами залит электролит.

Как работает аккумулятор (АКБ) при разряде

В момент, когда к электродам подключена нагрузка в виде лампочки, создается замкнутая электрическая цепь, через которую протекает ток разряда. Его формированию способствует движение электронов в металлических частях и анионов с катионами в электролите.

Этот процесс условно показан на схеме с никель-кадмиевой конструкцией электродов.

В данном примере в качестве материала положительного электрода используют окислы никеля с добавками графита, которые повышают электрическую проводимость. Металлом отрицательного электрода работает губчатый кадмий.

Во время разряда частицы активного кислорода из окислов никеля выделяются в электролит и направляются на отрицательные пластины, где окисляют кадмий.

Работа аккумулятора при заряде

Беря за основу отключенную нагрузку на клеммы пластин, подаем постоянное (в определенных ситуациях пульсирующее) напряжение большей величины, чем у заряжаемого аккумулятора с той же полярностью, когда плюсовые и минусовые клеммы источника и потребителя совпадают.

Таким образом мощность зарядного устройства всегда больше, чем та, которая «подавляет» оставшуюся в аккумуляторе энергию и создает электрический ток с направлением, противоположным разряду. Это приводит к изменениям внутренних химических процессов между электродами и электролитом. К примеру на банке с никель кадмиевыми пластинами положительный электрод обогащается кислородом, а отрицательный — восстанавливается до состояния чистого кадмия.

При разряде и заряде аккумулятора происходит изменение химического состава материала пластин (электродов), а электролита не меняется.

Способы соединения аккумуляторов (как работает аккумулятор)

Параллельное соединение (как работает аккумулятор)

Величина разряда тока, зависит от многих факторов, хотя в первую очередь от конструкции, примененных материалов и их габаритов. Чем значительнее площадь пластин у электродов, тем больший ток они могут выдерживать.

Этот принцип используется для параллельного подключения однотипных банок у аккумуляторов при необходимости увеличения тока на нагрузку. Чтобы зарядить такую конструкцию потребуется поднять мощность источника. Этот способ используется редко для готовых конструкций, в настоящее время куда проще сразу приобрести необходимый аккумулятор. Но им пользуются производители кислотных АКБ, соединяя различные пластины в единые блоки.

Последовательное соединение (как работает аккумулятор)

В зависимости от применяемых материалов, между двумя электродными пластинами распространенных в быту аккумуляторов может быть выработано напряжение 1,2/1,5 или 2,0 вольта. На самом деле этот диапазон гораздо шире. И многим электрическим приборов его явно недостаточно. Поэтому однотипные аккумуляторы подключают последовательно, делают это зачастую в едином корпусе.

Примером подобной конструкции служит широко распространенная автомобильная разработка на основе серной кислоты и свинцовых пластин-электродов.

Часто среди водителей транспорта, под понятием «аккумулятор» принято понимать любое устройство, независящее от количества его составных элементов — банок. Это не является правильным. Собранная из нескольких последовательно подключенных банок конструкция считается уже батареей, за которой закрепилось сокращенное название «АКБ». Ее внутреннее устройство показано на рисунке.

Любая банка состоит из двух блоков с набором пластин для положительного и отрицательного электродов. Блоки входят друг в друга без металлического контакта с возможностью надежной гальванической связи через электролит.

При этом контактные пластины имеют дополнительную решетку и отдалены между собой разделительной пластиной — сепаратором.

Благодаря соединению пластин в блоки увеличивается их рабочая площадь. Это снижает общее удельное сопротивление всей конструкции, позволяет повышать мощность подключаемой нагрузки.

Компоновка АКБ

С внешней стороны корпуса такая АКБ имеет элементы, показанные на рисунке ниже.

Из него видно, что прочный пластмассовый корпус закрыт герметично крышкой и сверху оборудован двумя клеммами. Они обычно имеют конусную форму, для подключения к электрической схеме автомобиля. На их выводах выбита маркировка полярности: «+» и «-». При этом есть одно правило: во избежании ошибок при подключении, диаметр положительной клеммы немного больше, чем у отрицательной.

У обслуживаемых аккумуляторных батарей сверху каждой банки помещена заливная горловина, чтобы контролировать уровень электролита либо доливки дистиллированной воды при эксплуатации. В нее вворачиваются пробка, предохраняющая внутренние полости банки от попадания загрязнений и одновременно не дает выливаться электролиту при наклонах АКБ.

Для того, чтобы предотвратить бурное выделение газов из электролита, который возможен при интенсивной езде, в пробках делаются отверстия для предотвращения повышения давления внутри банки. И через эти отверстия выходят кислород и водород, а также пары электролита. Такие ситуации, связанные с чрезмерными токами заряда, желательно избегать.

На том же рисунке выше показано соединение элементов между банками и расположение пластин-электродов.

Стартерные автомобильные АКБ (свинцово-кислотные) работают по принципу двойной сульфатации. На них во время разряда/заряда происходит электрохимический процесс, что сопровождается изменением химического состава активной массы электродов с выделением или поглощением в электролит (серную кислоту) воды.

Этим явлением можно объяснить повышение удельной плотности электролита при заряде, а так же снижение при разряде батареи. Иными словами, величина плотности дает возможность оценивать электрическое состояние АКБ. Для ее замера используют специальный прибор — автомобильный ареометр.

В состав электролита кислотных батарей входит дистиллированная вода. Она же при отрицательной температуре переходит в твердое состояние — лед. Поэтому, чтобы автомобильные аккумуляторы не замерзали в холодное время, необходимо применять специальные меры, предусмотренные правилами эксплуатации.

Виды аккумуляторов

Классификация АКБ по составу активного вещества

Свинцовые пластины, используемые в старых аккумуляторах перестали устраивать потребителей. Таким образом, возникала необходимость по улучшению качества работы АКБ. Сначала добавили сурьму к свинцу, что позволило заметно продлить срок эксплуатации батареи. На следующем этапе – уменьшили процентное содержания сурьмы до оптимальной концентрации. Такой подход привел к созданию малообслуживаемых аккумуляторов, характерной чертой которых является более редкий процесс долива воды.

При использовании металлического кальция для покрытия пластин появились кальциевые энергосберегающие источники. В предыдущих моделях потери воды из-за электролиза на 12 вольт нуждались в постоянном доливе, а кальций позволил повысить этот порог до 16 вольт. Так появилась возможность в производстве необслуживаемых аккумуляторов и использовать герметичный, неразборной корпус.

Виды АКБ

  • Сурьмянистые батареи. Этот вид относится к классике из-за повышенного состава сурьмы, которая ускоряет процесс электролиза.
  • АКБ со свинцом. В малосурьмянистых АКБ материалом для пластин служит свинец с небольшой примесью сурьмы. В них степень саморазряда значительно меньше, чем в сурьмянистых АКБ.
  • Калициевые источники. При производстве кальциевых источников свинцовые пластины легированы до 0,1% кальцием. Они могут иметь различные заряды, как отрицательный, так и положительный.
  • Гибридные источники энергии вытесняют кальциевые. При их производстве, две объединенные основные технологии имеют конструктивные отличия: одна, когда пластины формируются из сплава свинца и сурьмы, положительные электроды, а другая – когда пластины формируются из сплава свинца и кальция, отрицательные электроды.
  • EFB является улучшенной жидкозаполненной батареей. Свинцовые пластины в ЕФБ аккумуляторах в два раза толще, чем у обычных, вследствие чего увеличивается их ёмкость. Каждая платина закрыта в пакет из специальной ткани, который наполнен жидким сернокислотным электролитом.
  • В гелевых аккумуляторах применяется гелеобразный электролит. Суть такой технологии в том, что она позволяет снизить текучесть электролита, который содержит агрессивную серную кислоту.
  • В литиевых АКБ используется жидкий электролит, представляющий собой раствор фторсодержащих солей лития в смеси эфиров угольной кислоты.
  • AGM имеет отличительную особенность в электролите, где с помощью специальной технологии между пластинами вставляются стекловолоконные микропористые прокладки.
  • Во всех щелочных батареях применяется растворенная в воде щёлочь.

Классификация батарей по типу электролита

Электролиты бывают кислотными и щелочными.

Щелочные растворы применяются в заправке аккумуляторных батарей. Щелочные аккумуляторные жидкости этот такие жидкости, которые проявляют большую активность по отношению к металлам и кислотам. При реакциях с кислотами образуются соль и вода. Растворы щелочей подвергаются гидролизу. Химические свойства позволяют использовать этот тип электропроводящей жидкости для накопления электрической энергии в аккумуляторе.

Кислотные смеси с дистиллированной водой применяются в основном в автомобильных аккумуляторах. Составы этого типа легко можно приобрести в специализированных магазинах либо, при желании, приготовить самостоятельно на дому. На заводе процесс изготовления таких смесей осуществляется в масштабном производстве по ГОСТу. В домашней обстановке его приготовление так же возможно при соблюдении обязательных пропорций и правил техники безопасности. Для этого нужно смешать кислоту с дистиллированной водой.

Как работает аккумулятор — АКБ

Принцип работы аккумулятора основан на электрохимической реакции окисления свинца в растворе серной кислоты и воды.

При разрядке батареи на положительной пластине происходит окисление металлического свинца, в то время, как на отрицательной пластине восстанавливается уже диоксид свинца.

При зарядке происходит обратный процесс, количество диоксида свинца на отрицательной пластине уменьшается, а на положительной пластине увеличивается количество металла.

Так же при разрядке АКБ уменьшается количество серной кислоты в электролите и увеличивается количество воды. А при зарядке происходит обратный процесс.

Материалы АКБ

Пластины

На данный момент наиболее качественные батареи потерпели небольшие изменения. И связаны эти изменения с материалом пластин. Теперь пластины делают не из чистого свинца, а из его сплава с серебром. При этом удалось снизить массу батареи на треть, а срок её службы увеличить на 20 %.

Кроме этого, изменилась сама технология их изготовления. Если первые пластины производились путём их литья, то сегодня их делают из тонкого свинцового листа, путём штамповки. Такой метод дешевле и при этом пластины получаются прочнее и тоньше.

Сепараторы

Одной из причин выхода АКБ из строя является короткое замыкание положительных и отрицательных пластин.

Когда из пластин осыпается активная зона внизу банок происходит замыкание. Чтобы этого не случилось на помощь приходят сепараторы, которые делают в виде конвертов, запаянных снизу, под пластинами. Таким образом, когда активная зона осыпается она остаётся внутри конверта и не замыкает.

Литий-ионные аккумуляторы

Эти батареи получили широкое распостранение благодаря мобильным телефонам и иным гаджетам. Сегодня же, существуют разработки и для автомобилей. Однако, невзирая на все свои достоинства, в автотехнике данный вид АКБ не прижился из-за ряда принципиальных недостатков.

  1. Они резко теряют свою мощность из-за низкой температуры.
  2. Для зарядки таких батарей требуется строгое соответствие зарядному току, а это требует переделки электронной части генераторов.
  3. И самое главное, данные АКБ имеют стоимость в 15 раз дороже обычного кислотного аккумулятора.

Электролит

Как было указано выше, электролит представляет собой раствор серной кислоты и воды. Под действием низких температур, известно, что вода замерзает, однако с электролитом этого не происходит.

Но тем не менее она заметно загустевает и теряет свои свойства, из-за чего ёмкость батареи заметно снижается. Что бы избежать этого, сегодня, в электролит добавляют разнообразные присадки.

Гелевые электролиты

Их по праву можно считать вершиной эволюции кислотных батарей. Такие АКБ называются попросту, гелевыми. В этих устройствах электролит модифицирован настолько, что представляет собой нечто наподобие желе.

Такая модификация, в комплексе с другими вышеописанными инновациями дала поистине волшебные результаты. В итоге батареи стали практически вечными, невосприимчивыми к переворачиванию, практически не теряющими свои свойства зимой и при этом на много легче по массе.

Графен-полимерные аккумуляторы

Это, пожалуй, самые перспективные батареи для использования, как в автомобилях, оснащённых ДВС, так и электрической силовой установкой. В производстве этих АКБ использованы нанотехнологии.

Принцип работы этих поистине чудесных аккумуляторов заключается в следующем: их ёмкость, практически в три раза больше литий-ионных и при этом имеет меньшую стоимость, поскольку в их производстве не используется дорогостоящий литий. Кроме этого они не теряют своих свойств под действием низких температур.

Основные технические характеристики аккумуляторов

Номинальная емкость аккумулятора

Номинальная емкость элемента – способность накапливать и отдавать электроэнергию постоянного тока, определяет время автономной работы ИБП. Емкость электрического аккумулятора показывает время питания подключенной к нему нагрузки.

Важно! Полностью емкость не характеризует энергию аккумулятора, то есть энергию, которая может быть накоплена в полностью заряженном аккумуляторе. Чем больше напряжение аккумулятора, тем больше накопленная в нем энергия.

Емкость всегда указывается на корпусе АКБ, а также на упаковке. Именно по этому критерию, большинство пользователей выбирают нужную модель.

Пусковой ток

Это величину, характеризующая параметр тока, который протекает в стартере автомобиля в момент пуска силового узла. Пусковой или стартерный ток возникает в тот момент, когда в замке зажигания поворачивается ключ и начинает проворачиваться стартер. Единица измерения величины – Ампер. Тот же ток холодной прокрутки является показателем поведения аккумулятора в морозную погоду и сможет запускать двигатель при минусовых показателях. Определяется мощностью тока, которую батарея может выдать в течение первых 30 секунд при температуре -18°С. При высоких показателях пускового тока увеличиваются шансы завести машину при минусовой температуре.

Полярность

Порядок расположения на крышке аккумулятора присоединительных клемм, которые являются токовыводящими соединительными элементами, называется полярностью. Имеет два полюса – положительный и отрицательный и варианты расположения – прямое и обратное.

Прямая полярность – отечественная разработка. Дла ее определения нужно повернуть аккумулятор таким образом, чтобы этикетка была перед глазами. При расположении плюсовой клеммы слева, а минусовой справа, можно утверждать, что АКБ с прямой полярностью. На иномарках устанавливаются аккумуляторные батареи обратной полярности.

Устройство корпуса

У большинства аккумуляторов корпус состоит из ударопрочного полипропилена. Он характеризуется как легкий материал, не вступающий в химическую реакцию с агрессивным электролитом АКБ. Полипропилен имеет весьма хорошую стойкость к перепадам температур, возникающих под капотом автомобиля, где нагрев может достигать до +60 ̊С, а при морозах до -30°С. Корпус большинства АКБ состоит из ручки для переноса, пробок, индикатора заряда, клемм для подключения к электросети. Вес АКБ емкостью 55Ач около 16,5 кг. Известными типами аккумуляторов, обладающих спросом являются: американский, европейский, азиатский и российский типы корпусов.

Европейский тип корпуса характерен тем, что АКБ клеммы находятся в углублении, их верхний край не выступает над плоскостью крышки. В некоторых случаях клеммы дополнительно защищаются от внешнего воздействия специальными крышечками. Азиатский тип корпуса – это коробка, на которой клеммы расположились на верхней крышке. Верхний край клемм является самой высокой точкой аккумулятора.

Российский стандарт АКБ

Обозначение Описание букв
А АКБ имеет общую крышку для всего корпуса
З Корпус батареи залит и она является полностью заряженной изначально
Э Корпус-моноблок АКБ выполнен из эбонита
Т Корпус-моноблок АБК выполнен из термопластика
М В корпусе использованы сепараторы типа минпласта из ПВХ
П В конструкции использованы полиэтиленовые сепараторы-конверты

Тип крепления аккумулятора

Особое внимание при выборе АКБ следует уделять типу крепления АКБ, при котором батарея может крепиться снизу или сверху. С помощью специальной монтажной рамки, которая охватывает аккумулятор, элемент крепится вверху. Крепление аккумулятора происходит с помощью планки и двух шпилек. Чаще всего такой вид установки и фиксации аккумуляторной батареи встречается на автомобилях китайского или корейского производства.

Нижнее крепление применимо на европейских автомобилях. На нижней части корпуса АКБ находится выступ. За этот выступ аккумулятор прижимается к платформе с помощью пластины и винта.

Заключение

Теперь вы знаете, как работает аккумулятор. Его роль в работе приборов трудно оспорить. Данный источник энергии применяться почти во всех отраслях. Что доказывает его значимость и необходимость знаний о принципе работы АКБ. А также ее внутреннем содержимом. Аккумуляторы широко используются в автомобилях, разнообразных электроприборах, кондиционерах, мультимедийных центрах. Там, где, генераторы не всегда справляются с обеспечением их энергией. И тогда в «игру» вступает АКБ, которая кроме подпитки энергией еще и выполняет основную функцию, обеспечивая электроэнергией стартер двигателя. Водителю необходимо знать, как устроен аккумулятор. Ведь в нужное время придется устранять сбои в работе источника энергии. К тому же, важно иметь представление о назначении и видах аккумулятора, чтобы правильно использовать ресурс, подобрать батарею к условиям эксплуатации и автомобилю.

Источник

Оцените статью