- Тонкопленочная технология отвоевывает позиции на рынке солнечной энергетики
- Подробнее о тонкопленочной технологии
- От плоской формы к цилиндрической
- Многопереходные солнечные элементы
- Самые интересные достижения в мире тонкопленочных модулей
- 3 основных типа солнечных панелей: что эффективнее и какой вариант подойдёт вам
- Основные типы солнечных панелей — сравнение
- Из чего сделаны разные солнечные панели
- Монокристаллические и поликристаллические солнечные панели
- Тонкопленочные солнечные панели
- Мощность и эффективность солнечных панелей
- Эффективность монокристаллических и поликристаллических солнечных панелей
- Эффективность тонкоплёночных солнечных панелей
- Как тип солнечной панели влияет на её стоимость
- Монокристаллические солнечные панели — самый дорогой вариант
- Поликристаллические солнечные панели — ощутимо дешевле
- Тонкопленочные солнечные панели — всё зависит от материала
- Так что же выбрать?
Тонкопленочная технология отвоевывает позиции на рынке солнечной энергетики
Дата публикации: 31 октября 2013
В настоящее время порядка 80-85% производства солнечных батарей приходится на кристаллические модули. Но по заверениям специалистов этой области, будущее все-таки за тонкопленочной технологией. Ее главное достоинство, способное обеспечить ей лидирующие позиции, это более низкая себестоимость. Модули, производимые с использованием тонкопленочной технологии, получили название гибкие солнечные батареи, благодаря тому, что их эластичность и малый вес позволяют монтировать солнечные модули на любой поверхности и даже вшивать их в одежду.
Для производства гибких модулей используют пленки из полимерных материалов, аморфного кремния, алюминия, теллурида кадмия и других полупроводников. Чаще всего их применяют в качестве переносных зарядных устройств, так называемых складных солнечных батарей, для ноутбуков, видеокамер, мобильных телефонов и другой электроники, не требующей большой мощности. Для выработки значительного количества энергии потребуется и большая площадь модулей.
Подробнее о тонкопленочной технологии
Первые тонкопленочные солнечные батареи изготавливались с использованием аморфного кремния, который наносили тонким слоем на поверхность подложки. Их КПД составлял всего 4-5%, да и срок службы оставлял желать лучшего. Второе поколение аморфных модулей уже имело КПД на 2-3% больше, а срок эксплуатации практически сравнялся со сроком службы кристаллических модулей. А вот КПД третьего поколения модулей увеличилось уже до 12%. Так что прогресс на лицо.
При производстве складных солнечных батарей и гибких модулей больших размеров, чаще всего применяют теллурид кадмия и селенид меди-индия. Использование этих полупроводников дает увеличение коэффициента полезного действия от 5 до 10%. А учитывая, что ученые-физики борются за каждый дополнительный процент, такая разница очень ощутима. Более подробно о производстве солнечных батарей по тонкопленочной технологии здесь.
Особенности тонкопленочных батарей:
- Хорошо работают даже при рассеянном свете, поэтому суммарная годовая выработка мощности на 10-15% больше, чем у кристаллических модулей.
- Более низкая стоимость производства, следовательно, данный вид солнечных батарей обойдется Вам дешевле.
- Большую эффективность показывают в системах с мощностью более 10кВт.
- При равном показателе вырабатываемой мощности, площадь тонкопленочных модулей примерно в 2,5 раза больше, чем у кристаллических.
- Требуют использование высоковольтных контроллеров и инверторов.
Случаи, когда применение тонкопленочных модулей обосновано:
- В регионах, где преобладает пасмурная погода. Модули, выполненные по тонкопленочной технологии, лучше поглощают рассеянный свет.
- В странах с жарким климатом. При высокой температуре тонкопленочные солнечные батареи показывают большую эффективность.
- Есть необходимость монтирования панелей в здание либо требуется их использование в качестве дизайнерских задумок или конструкторских решений, например, для отделки фасада.
- Потребность в модулях с частичной прозрачностью до 20%.
От плоской формы к цилиндрической
Цилиндрические солнечные батареи впервые разработала небольшая американская компания с запоминающимся названием Solyndra (от слов «солнечный» и «цилиндр»). Свое достижение они представили в 2008 году и сразу же получили несколько крупных заказов от европейских и американских фирм. По их заверениям, эта цифра составляла более 1 млрд. $.
До 2008 года солнечные элементы имели плоскую форму. Solyndra же предложила устанавливать в солнечные батареи элементы-цилиндры. Тонкий слой фотоэлемента наносится на поверхность стеклянной трубки, после чего она помещается в еще одну такую же трубку, но уже с электрическими контактами. В качестве полупроводников для элементов используют уже знакомые нам медь, галлий, селен и индий. Цилиндрические солнечные батареи за счет своей формы поглощают большее количество света, и, как следствие, имеют больший показатель производительности. Каждая панель состоит из 40 цилиндров и имеет размеры 1 на 2 метра.
Для увеличения поглощаемого света рекомендуют использовать цилиндрические батареи в сочетании с белым покрытием крыши. В таком случае, отраженные от крыши лучи будут проходить через цилиндры, чем и обеспечат еще плюс 20% поглощенной энергии. Еще одно важное достоинство батарей с элементами цилиндрической формы – это их устойчивость к сильному ветру. Они способны выдерживать порывы ветра скоростью до 200 км/ч. Это делает монтаж солнечных батарей более простым и дешевым.
Многопереходные солнечные элементы
В большинстве производимых в настоящее время солнечных элементах реализован один p-n-переход. То есть свободные электроны в таком элементе создают только те фотоны, которые обладают энергией больше или равной ширине запрещенной зоны. Чтобы преодолеть это ограничение учеными был разработан новый вид солнечных элементов, получивших название каскадные элементы. Они имеют многослойную структуру, состоящую из солнечных элементов, ширина запрещенной зоны которых различна.
Самые перспективные гибкие солнечные батареи, изготовленные с использованием каскадных элементов, имеют 3 p-n-перехода. Верхний слой формируют из сплава на основе a-Si:H, для второго используют сплав a-SiGe:H, содержащий 10-15% германия, для третьего слоя процентное содержание германия в сплаве увеличивают до 40-50%. С каждым последующим слоем ширина запрещенной зоны уменьшается, поэтому каждый следующий слой поглощает те фотоны, которые прошли через предыдущий. В таблице ниже представлены значения КПД каскадных СЭ. Стоит отметить, что столь высокие показатели КПД позволяют уменьшить стоимость получаемой солнечной энергии почти в 2 раза в сравнении с солнечными батареями на основе кристаллического кремния.
Теоретическое значение КПД | Ожидаемое значение КПД | Реализованное значение КПД | |
1 p-n-переход | 30 | 27 | 25,1 |
2 p-n-перехода | 36 | 33 | 30,3 |
3 p-n-перехода | 42 | 38 | 31,0 |
4 p-n-перехода | 47 | 42 | — |
5 p-n-переходов | 49 | 44 | — |
Самые интересные достижения в мире тонкопленочных модулей
2 года назад специалисты лаборатории МГУ разработали рулонные органические солнечные батареи на основе полимера в качестве активного слоя и гибкой органической подложки. Их КПД составлял всего 4%, зато они могли эффективно работать при температуре 80°С в течение 10 тысяч часов. На этом их деятельность не закончилась, исследования ведутся постоянно, основным направлением выбраны солнечные элементы на основе полимерных материалов.
Специалисты федеральной лаборатории технологий и материаловедения в Швейцарии создали солнечный элемент на полимерной подложке с КПД 20,4%. В качестве полупроводника использовались 4 элемента: селен, индий, галлий и медь. На сегодняшний день это рекордный показатель для СЭ, выполненных на основе перечисленных элементов. Предыдущий рекорд составлял 18,7%.
Для тонкопленочных фотоэлементов на основе индия, селена и меди, максимальное значение КПД на сегодня оставляет 19,7%. Такого показателя смогла добиться японская компания Solar Frontier. Поглощающие пленки на фотоэлементы наносили методом напыления, используя термическую обработку в парах селена.
Компания ICP Solar Technologies представила оригинальную складную солнечную батарею. Ее достаточно раскатать в солнечном месте и можно подключать устройство, которое необходимо зарядить. Мощность батареи 5 Вт при напряжении питания 12 В. Согласитесь, незаменимый вариант для всех туристов, хотя и не единственный. Разработкой подобных переносных СБ занимаются различные фирмы. Так не меньшей популярностью пользуется складная солнечная батарея Foldable Solar Chargers, максимальная мощность которой составляет 190 Вт.
Ну и самой интересной разработкой можно назвать «тканевые» солнечные панели. Японские ученые решили соединить крошечные цилиндрические солнечные элементы размером всего 1,2 мм и тканевое полотно. Такое необычное решение позволит создавать высокотехнологичные материалы для одежды и переносные тенты. Промышленное производство «солнечной» ткани намечено на март 2015 года.
Займет ли тонкопленочная технология первое место при производстве солнечных элементов, покажет будущее. Но судя по активным исследованиям, ведущимся в данной области, и по неплохим результатам, вполне возможно, что в ближайшем будущем ученые все-таки смогут создать не просто эффективные солнечные батареи, но еще и доступные при этом широким слоям населения.
Статью подготовила Абдуллина Регина
В этом ролике рассказано о солнечных модулях на базе тонкопленочной технологии, которые позволяют преобразовать в электроэнергию до 10% солнечного излучения и при этом в полтора раза повысить эффективность фотоэлементов, а расход кремния при производстве сократить в 200 раз!
Источник
3 основных типа солнечных панелей: что эффективнее и какой вариант подойдёт вам
Сейчас наиболее распространены такие типы солнечных панелей: монокристаллические, поликристаллические и тонкопленочные. Они имеют разный принцип производства, внешний вид, а самое главное — эффективность.
Основные типы солнечных панелей — сравнение
Рассмотрим преимущества и недостатки разных видов.
Разновидность | Преимущества | Недостатки |
---|---|---|
Монокристаллические | • Высокая эффективность. • Эстетичный внешний вид. | • Высокая стоимость. |
Поликристаллические | • Низкая стоимость. | • Сравнительно невысокая эффективность. |
Тонкопленочные | • Портативность и гибкость. • Малый вес. • Эстетичный внешний вид. | • Сравнительно невысокая эффективность. |
Ниже пройдёмся по эффективности и особенностям использования каждого типа.
Из чего сделаны разные солнечные панели
Основой производства фотоэлементов выступает полупроводниковый материал, благодаря которому происходит преобразование солнечной энергии в электрическую. В современных солнечных системах полупроводником чаще всего выступает кремний. Визуально типы солнечных панелей отличаются следующим образом:
- Монокристаллические — ячейки чёрного цвета.
- Поликристаллические — ячейки синего цвета.
- Тонкоплёночные — имеют различный цвет в зависимости от используемого полупроводникового материала. Отличаются гибкими свойствами.
Монокристаллические и поликристаллические солнечные панели
В обоих случаях конструкция одинакова: кремниевые ячейки собираются в ряды, формируя прямоугольную конструкцию. Для защиты используется стеклянное покрытие и герметичная рамка.
И там, и там основным материалом является кремний, но качество самого кремния отличается. Монокристаллические элементы вырезаются из цельного кристалла кремния. Для поликристаллических используют небольшие фрагменты кремния, которые переплавляют и прессуют в форме ячеек.
Тонкопленочные солнечные панели
В этом случае основой для производства служит аморфный кремний (a-Si) — некристаллическая версия кремния. Его соединение особым образом «напыляется» на гибкую основу, которая собирается в гибкую панель.
Сейчас в производстве тонкоплёночных моделей чаще всего используется теллурид кадмия (CdTe). Это поколение гибких панелей существенно отличается по эффективности от аморфных кремниевых предшественников.
Панели из селенида меди, индия, галлия (CIGS) также являются представителями тонкоплёночных технологий, но встречаются не так часто.
Мощность и эффективность солнечных панелей
Качество материала и конструктивные особенности значительно влияют на производительность.
Эффективность монокристаллических и поликристаллических солнечных панелей
Из всех вариантов монокристаллические имеют самый высокий КПД и мощность. Их эффективность может превышать 20%, в то время как поликристаллические обычно имеют показатели 15-17%.
Большинство стандартных монокристаллических солнечных панелей достигают мощности более 300 Вт, а некоторые могут превышать 400 Вт. Поликристаллические в среднем производят 200 Вт, хотя дорогие модели могут превышать и 300 Вт.
Оба типа солнечных панелей поставляются с 60, 72 и 96 кремниевыми ячейками. Но при равном количестве ячеек монокристаллические системы способны производить больше электроэнергии.
Эффективность тонкоплёночных солнечных панелей
Гибкие полимерные устройства ощутимо уступают по мощности кристаллическим аналогам. С учётом использования передовых полупроводников КПД достигает 11%.
Тонкоплёночные панели не имеют стандартизированных размеров, но сравнивая мощность кристаллических и тонкоплёночных систем на 1м 2 , можно сказать, что первые всегда обеспечат большим количеством электроэнергии.
Как тип солнечной панели влияет на её стоимость
Цены различаются из-за материала, который используется для производства солнечных элементов, и способа его обработки.
Монокристаллические солнечные панели — самый дорогой вариант
Производство таких фотоэлементов предполагает выращивание цельных кристаллов кремния. Этот процесс, известный как метод Чохральского, достаточно энергоемкий и иногда проходит неудачно. Повреждённые заготовки могут быть использованы для поликристаллических элементов.
Поликристаллические солнечные панели — ощутимо дешевле
Здесь процесс создания фотоэлементов намного проще в технологическом плане. Не нужно тратится на обработку цельных кристаллов — мелкие фрагменты просто плавятся и прессуются в формы. Это дешевле для производителя, а следовательно и для потребителя.
Тонкопленочные солнечные панели — всё зависит от материала
Сколько вы заплатите за тонкопленочные элементы, во многом будет зависеть от материала, который был использован для их производства. Дешевле всего обойдутся панели из CdTe и аморфного кремния, в то время как вариант из CIGS будет ощутимо дороже.
Нужно учитывать, что общая стоимость установки гибких солнечных панелей может быть ниже, чем монтаж монокристаллических или поликристаллических систем. Они легче и практичнее, что упрощает монтажникам возможность доставлять панели на крышу и закреплять их на месте. Это позволяет снизить затраты на рабочую силу.
Так что же выбрать?
Монокристаллические, поликристаллические и тонкопленочные панели имеют свои преимущества и недостатки, и обычно решение о выборе того или иного варианта зависит от особенностей помещения и от уровня потребности домохозяйства в электроэнергии.
Владельцы недвижимости с большой площадью под солнечную электростанцию могут сэкономить, установив менее эффективные и недорогие поликристаллические панели. Если у вас ограниченное пространство, лучшим вариантом будет установка высокоэффективных монокристаллических модулей.
Тонкоплёночные панели обычно устанавливают на просторную крышу коммерческих/промышленных помещений, которые не могут выдержать дополнительный вес традиционного солнечного оборудования. Кроме того, тонкопленочные панели иногда могут быть идеальным решением для портативных солнечных систем, например, на жилых автофургонах или лодках.
Все типы солнечных панелей имеют свои особенности производства, что влияет на их итоговую эффективность. Лучший КПД у монокристаллических, но если у вас достаточно места под солнечную систему, можно установить поликристаллические и сэкономить на расходах. Тонкоплёночные имеют самую низкую производительность, но удобны при монтаже.
Источник