Тепловой насос или ветряк

Обогреться ветром

Когда говорят о возобновляемых источниках энергии, под энергией почти всегда понимают электричество. Однако человечество потребляет заметно больше энергии тепловой, чем электрической. Преобразование же последней в тепло экономически неэффективно.

Солнечные тепловые коллекторы и пруды обеспечивают нас тепловой энергией напрямую, минуя выработку электроэнергии, откуда их высокая эффективность. Но немногие знают, что то же самое могут делать ветровые колёса. Оснастив такое колесо «тормозной системой» в виде джоулевой мешалки, можно получать тепловую энергию непосредственно из энергии вращения, используя эффект гидродинамического нагрева жидкости.

НЕ ВОЮЙТЕ С МЕЛЬНИЦАМИ

Всем известная старая добрая ветряная мельница служит людям как минимум две тысячи лет. Она передаёт энергию вращения лопастей непосредственно на вал, приводящий мельничные жернова. Такая конструкция остаётся актуальной и сегодня, поскольку оказывается более эффективной, чем преобразование энергии вращения в электричество с последующим обратным преобразованием его в кинетическую энергию (например, электропривод тех же мельничных жерновов).

Но ветряная мельница может вырабатывать не только механическую, но и тепловую энергию. Для этого ветряк соединяют с так называемой джоулевой мешалкой, или водяным тормозом. Она представляет собой погружённую в теплоизолированный сосуд с жидкостью мешалку, или крыльчатку, приводимую во вращение валом ветряка. За счёт гидродинамического взаимодействия, возникающего между потоками воды в мешалке, механическая энергия преобразуется в тепловую. Получаемая таким образом горячая вода может подаваться в отопительную систему дома, использоваться для мытья и других целей. Возможно её применение в технологических процессах, не требующих высоких температур.

Читайте также:  Электрогенераторы для паровых турбин

Джеймс Джоуль построил свою мешалку с ручным приводом в 1840 гг. для знаменитого эксперимента по измерению механического эквивалента тепла. Самое удивительное, что подобные ветряки гипотетически могли быть созданы сотни, если не тысячи лет назад. Для них не требуется никаких экзотических материалов — достаточно дерева и/или металла. И хотя нельзя с уверенностью сказать, что их никогда не использовали в доиндустриальные времена, первое упоминание о тепловых ветряках датируется 1970-ми годами, когда грянул нефтяной кризис и датчане начали строить их из-за нехватки нефтепродуктов.

Тогда Дания практически полностью зависела от импорта нефти, поэтому из-за перерывов в её поставках многие дома оставались без отопления. К тому времени датчане уже неплохо освоили постройку своими руками небольших ветровых турбин, вырабатывающих электроэнергию для ферм. Некоторые просто использовали для отопления генерируемое ими электричество, другие же стали строить отдельные ветряки, вырабатывающие тепло.

ДЕШЕВЛЕ И ЭФФЕКТИВНЕЕ

Во-первых, механические тепловые ветряки значительно проще по конструкции, чем классические ВЭУ, а, следовательно, доступнее и требуют меньше материалов для изготовления. Благодаря простоте конструкции у них больше время безотказной работы. Им не нужны тяжеленные редуктор, генератор, трансформатор и преобразователь частоты. Благодаря значительно меньшему весу такой ветряк не нуждается в столь основательной башне и фундаменте под неё. Джоулева мешалка легче, меньше по размерам и дешевле, чем электрический генератор. Немаловажно и то, что удельная стоимость накопителя тепловой энергии на 60-70% ниже, чем электрохимической батареи.

Во-вторых, преобразование ветровой или солнечной энергии непосредственно в тепло или механическую энергию более энергоэффективно, чем через промежуточное преобразование в электричество. Это значит, что для выработки того же количества тепла понадобится меньше земельных площадей и других ресурсов.

Читайте также:  Электрогенераторы бензиновые для дачи хонда

Наконец, прямая генерация тепла значительно улучшает экономические показатели и загрузку небольших ветряков. Многие исследования показали, что небольшие ВЭУ за весь срок службы могут произвести меньше энергии, чем было затрачено на их изготовление. Используя же ветряки аналогичного класса для выработки тепла, можно снизить энергетические и финансовые затраты, нарастить время безотказной работы и эффективность оборудования.

КАКАЯ МОЩНОСТЬ?

Датские ветряки с джоулевой мешалкой в 1970-х были сравнительно небольшими, с диаметром ротора около 6 м и высотой башни около 12 м. В 1980-х были построены более крупные машины. В большинстве случаев в них использовались простые деревянные лопасти. В литературе описано как минимум 12 различных моделей — как самодельных, так и коммерческих. Многие из них строились из деталей от списанных в утиль автомобилей и другой техники со свалок.

Один из ранних датских небольших тепловых ветряков прошёл официальные испытания. Агрегат Calorius type 37 с ротором диаметром 5 м и башней высотой 9 м вырабатывал 3,5 кВт тепла при скорости ветра 11 м/с. Это сравнимо с теплопроизводительностью малых электрических отопительных котлов. С 1993 по 2000 гг. датская компания Westrup построила 34 основанных на этой конструкции тепловых ветряка, и к 2012 г. 17 из них продолжали работать.

Позднее, в 1980-х, Кнуд Бертоу построил наиболее сложный на тот момент тепловой ветряк — модель LO-FA. В других моделях тепло генерировалось в нижней части башни — от ротора через всю башню шёл вал, который вращал мешалку. Но в LO-FA мешалка и все остальные механические части размещались в верхней части башни. Нижние 10 метров 20-метровой башни были заполнены примерно 15 тоннами воды, заключённой в теплоизолированном резервуаре.

LO-FA также считается самым большим из известных тепловых ветряков — его ротор имел диаметр 12 м. Теплопроизводительность машины оценивалась в 90 кВт при скорости ветра 14 м/с. Этот показатель кажется завышенным в сравнении с другими моделями, но стоит отметить, что выработка растёт быстрее, чем увеличиваются диаметр ротора и скорость ветра. В качестве «тормозной жидкости» использовалась не вода, а гидравлическое масло, которое можно нагревать до значительно более высоких температур. Масло передавало своё тепло воде в нижнем резервуаре.

НАКОНЕЦ-ТО ВСПОМНИЛИ

Несколько лет назад интерес к тепловым ветрякам начал возрождаться, хотя пока количество научных исследований на эту тему можно пересчитать по пальцам. В статье 2011 г. немецкие и британские учёные отметили, что «небольшим и территориально удалённым домовладениям в северных районах необходима скорее тепловая энергия, чем электричество, так что ветровые турбины в таких местах должны вырабатывать тепло, а не электроэнергию» .

Исследователи объяснили и иллюстрировали работу джоулевой мешалки и рассчитали её оптимальные характеристики. Они обнаружили, что скорость вращения и крутящий момент ротора и перемешивающей крыльчатки должны быть тщательно согласованы. Так, для очень небольшого ветряка Савониуса (с вертикальной осью вращения), который учёные использовали в качестве модели (ротор диаметром 0,5 м на башне высотой 2 м), расчётный диаметр крыльчатки — 0,388 м.

Затем учёные провели 50-часовое тестирование, чтобы определить теплопроизводительность ветряка. Хотя ротор Савониуса низкоскоростной и плохо подходит для выработки электроэнергии, оказалось, что он очень недурной производитель тепла: крошечная машина вырабатывала до 1 кВт тепла при скорости ветра 15 м/с.

Понятно, что штормовая погода бывает не часто, поэтому не меньшее значение имеет средняя скорость ветра в конкретной местности. В 2015 г. было проведено исследование возможности генерировать тепло ветряками в Литве, прибалтийской стране с довольно холодным климатом, зависимой от дорогого импортного топлива. Учёные подсчитали, что при средней местной скорости ветра 4 м/с (3 балла по шкале Бофорта) для выработки одного киловатта тепла потребуется ветряк с диаметром ротора 8,2 м.

СОХРАНЕНИЕ ТЕПЛА

Ветер достигает даже своей средней скорости далеко не всегда, а это значит, что необходим какой-либо накопитель тепла — иначе дом будет отапливаться только в хороший ветер. Один кубометр (1 т) горячей воды может хранить до 90 кВт·ч тепловой энергии, чего достаточно примерно на один-два дня отопления дома на четыре человека.

Чтобы обеспечить отопление в течение безветренной недели, потребуются 7 куб. м воды плюс теплоизоляция здания. Учитывая потери энергии, вы поймёте, почему в датских тепловых ветряках устанавливались резервуары на 10 и даже 20 т воды.

Тепловой ветряк можно объединить с солнечным нагревателем, чтобы водяной резервуар наполнялся энергией и солнца, и ветра. В этом случае появляется возможность создать достаточно надёжную отопительную систему с резервуаром меньшего размера.

По некоторым подсчётам, переход на прямую выработку тепловой энергии из ветра позволит экономить в три раза больше ископаемого топлива при том же количестве ветряков, которые к тому же выйдут дешевле в производстве и эксплуатации. Будем надеяться, что эту технологию вскоре оценят по заслугам, по крайней мере — в странах с холодным и умеренным климатом.

Еще больше интересных материалов ищите на нашем портале Энерговектор.com или подписывайтесь на наш канал.

Портал Энерговектор — ​это ​ всегда свежие новости, комментарии финансовых аналитиков, оперативные фото- и видеорепортажи. На портале также размещаются расширенные версии статей, публикуемых в газете Энерговектор, с дополнительными иллюстрациями и видеовставками. Мы придаём большое значение вопросам престижа энергетических профессий, развитию отечественного энергетического машиностроения и энергоинжиниринга, обмену опытом и новым «прорывным» технологиям.

Источник

Тепловой насос “воздух-воздух”: принцип действия, устройство, подбор и расчеты

Хотите обустроить в доме конвекторное отопление, где для нагрева теплоносителя используется тепловой насос «воздух-воздух», обеспечивающий значительную экономию расходов на обогрев? Согласитесь, что получить полноценное отопление в компании с горячей водой практически бесплатно — весьма заманчивое мероприятие.

Но вы не знаете, как соорудить подобную систему, чтобы альтернативным способом обогревать помещения и получать горячую воду для бытовых нужд?

Мы поможем разобраться с этим вопросом — в статье освещен принцип действия и устройство насоса. Энергию такой системе придется тратить только на работу компрессора, а основной объем тепла будет браться просто с улицы из атмосферы, за что у нас пока денег не требуют.

Также рассмотрены преимущества его внедрения в систему и существенные недостатки. Отдельное внимание уделено подбору и расчету насоса.

А любителям все делать своими руками мы предлагаем соорудить подобный насос самостоятельно, используя подручные материалы. В помощь приводим фотоматериалы и видеорекомендации по устройству и функционированию теплового воздушного насоса.

Характеристика теплового насоса воздух-воздух

Любой теплонасос относится к оборудованию из сферы альтернативной энергетики. Он забирает тепловую энергию воздушных масс на улице, из окружающего пространства в помещении, чтобы обогреть ею жилые и нежилые объекты.

При этом не используются какие-либо сгораемые виды топлива.

Внешне тепловой насос (ТН) воздух-воздух похож на инверторный кондиционер, сплит-систему из наружного и внутридомового блока.

А по принципу действия он больше напоминает холодильник, только действует “наоборот”. Но в отличие от них обоих этот теплонасос способен как охлаждать, так и нагревать воздушные массы в доме.

Принцип действия и внутреннее устройство

В основе работы ТН воздух-воздух лежит нехитрое физическое явление термодинамики – жидкость при испарении охлаждает поверхность, с которой она рассевается. Например, пар над кружкой с горячим чаем демонстрирует тот же эффект.

На этом принципе работает и обычный холодильник. Внутри него расположены трубки, по которым циркулирует хладагент под высоким давлением. Он забирает тепло из внутреннего пространства морозильной камеры, слегка нагреваясь при этом.

Потом собранное тепло отдается в воздух комнаты посредством теплообменника (решетки сзади холодильника).

А чтобы после хладагент остыл до рабочих температур, он сжимается в компрессоре. Причем за цикл работы фреон внутри системы компрессор-конденсатор-испаритель постоянно переходит из газообразного состояния в жидкое и обратно.

Воздушный тепловой насос функционирует абсолютно аналогично. Только тепло он берет с улицы, а не из закрытого морозильника. Даже если снаружи мороз, то в атмосфере все равно есть немало тепловой энергии.

Состоит тепловой насос воздух-воздух из таких элементов:

  • компрессора;
  • испарителя с вентилятором принудительного обдува;
  • расширительного клапана;
  • медных трубок для перекачки фреона между улицей и домом;
  • конденсатора с вентилятором подачи нагретого воздуха в помещение.

Первые три элемента составляют внешний блок, а последний относится к внутренней части теплонасоса. Теплоизолированные трубки из меди предназначены для непрерывного перемещения теплоносителя между этими модулями сплит-системы.

Алгоритм работы теплового насоса воздух-воздух выглядит следующим образом:

  1. Уличный воздух втягивается вентилятором в наружный блок и прогоняется сквозь ребра внешнего испарителя. Циркулирующий по теплообменнику фреон вбирает в себя имеющуюся в нем тепловую энергию, переходя при этом в газообразное состояние.
  2. Далее газ попадает в конденсатор, где сжимается. А потом он перекачивается по медным трубам во внутренний блок.
  3. В расположенном в доме конденсаторе газ переходит обратно в жидкость, передавая тепло внутрикомнатному воздуху.
  4. Затем излишнее давление стравливается посредством расширительного клапана, и жидкий фреон опять отправляется в первичный испаритель.

Значение температуры фреона, поступающего во внешний блок, всегда ниже температуры окружающей среды. Поэтому он всегда забирает тепло из атмосферы.

Но уровень “охлаждения” теплоносителя в системе постоянен, а наружная температура постоянно колеблется. По этой причине при сильных морозах ТН теряет свою эффективность.

Чтобы увеличить мощность теплонасоса, поверхности конденсатора и испарителя делаются максимально большими. А для бесперебойности работы в зимний период наружный теплообменник оснащается собственной системой оттаивания.

Плюсы и минусы воздушного теплонасоса

У каждой технически сложной системы имеются свои достоинства и недостатки. Рекламные проспекты это одно, а в реальности владельцы тепловых насосов рискуют столкнуться с определенными проблемами.

Установки обогрева/охлаждения типа «воздух-воздух» выгодны, по ряду причин.

К числу основных плюсов относят:

  • Универсальность. Системы позволяют отапливать и остужать помещения в зависимости от назначения комнаты, потребностей и от климатического сезона.
  • Экологичность. Дают возможность полностью отказаться от сжигания природного газа, угля, дров и т.п., засоряющих природную среду продуктами горения.
  • Простота монтажа. Собрать систему из составляющих заводского производства не составит труда. Можно собственноручно соорудить тепловой насос из подручных средств.
  • Пожаробезопасность. Процесс получения тепла не связан с применением горючего. Даже нарушения в работе установки не смогут повлечь возгораний.
  • Экономичность. Привлекают высоким коэффициентом теплоотдачи при минимальных затратах (на потребленный 1 кВт электроэнергии они выдают 4–5 кВт тепла). К тому же, быстро окупаются.
  • Доступность по цене. Стоимость систем заводского изготовления позволяет приобрести тепловой насос практически всем желающим. Собственноручно изготовленная установка будет практически бесплатной.
  • Удобство эксплуатации. Самый технически сложный прибор в системе – компрессор, с обслуживанием которого трудно не справиться. С характерной для тепловых насосов нагрузкой компрессоры редко выходят из строя раньше обещанного производителем срока.

Для организации отопления в одной комнате достаточно установить сплит-систему, повесив на фасаде внешний модуль, а на внутренней стене – конвектор. Чтобы обогреть несколько помещений придется обустраивать каналы распределения нагретого воздуха.

Все управление тепловым насосом воздух-воздух осуществляется встроенной автоматикой. Особого внимания уделять работе и настройке этой системе не придется. Надо будет только регулярно чистить воздушные фильтры и иногда их менять.

Среди отрицательных сторон теплонасосов можно упомянуть:

  • пусть и незначительный, но все же шумовой фон;
  • прямую зависимость эффективности системы от внешней температуры;
  • рост электропотребления при похолодании на улице;
  • постоянно висящую в воздухе пыль из-за непрерывной работы вентилятора и конвекции воздуха в комнате;
  • зависимость от электроснабжения (для бесперебойной работы потребуется генератор).

При температурах снаружи до -10°С все работает прекрасно, забираемого с улицы тепла вполне хватает для создания в доме комфортных условий. Но при дальнейшем похолодании эффективность насоса резка падает.

Если коттедж построен в местности с холодным климатом и сильными морозами по зиме, то без дополнительного котла или камина не обойтись.

Для обустройства воздушного обогрева такие системы подходят идеально. Минимум трат электроэнергии, усилий для монтажа и проблем с обслуживанием. Но ими нельзя нагреть воду. Для этого придется дополнительно ставить бойлер или подключаться к централизованным сетям.

Тепловые насосы воздух-воздух являются оптимальным способом обогрева зданий, построенных из дерева или СИП. У таких строений низкие теплопотери, мощностей воздушного теплонасоса для их отопления хватает с избытком.

Коренные отличия от кондиционера

Внешне тепловой насос воздух-воздух схож с бытовым кондиционером. Но у него есть свои отличительные конструктивные особенности и технические характеристики.

Первое устройство используется в качестве основного источника обогрева, работающего круглогодично. А второе больше предназначено для охлаждения воздуха в летнюю жару.

Основная функция теплонасоса – это отопление. Однако многие модели способны также охлаждать комнатный воздух. Но в этом режиме работы они существенно уступают кондиционеру по энергоэффективности. Это скорее крайний случай их использования.

С другой стороны и многие инверторные кондиционеры могут нагревать воздух в помещениях. Но электричества они при этом потребляют гораздо больше тепловых насосов. У каждого устройства свое предназначение.

Использование ТН «воздух-воздух» – это в первую очередь переход на возобновляемые источники энергии.

Эти системы экономически выгодны, несмотря на крупные первичные вложения денег. Сокращение платежей за отопление окупает все начальные затраты.

Подбор и расчеты теплового насоса

Теплонасос воздух-воздух будет эффективен, только если его правильно подобрать. Необходимо заранее рассчитать его мощность в зависимости от квадратуры дома. А уже потом смотреть какие у разных производителей цены.

При расчетах используется коэффициент энергоэффективности СОР (отношение мощности ТН к затраченной энергии).

При “тепличных условиях” он нередко достигает 4–5 пунктов, а самые современные модели до 7–8. Однако при падении температуры на улице до -15–20°С этот показатель резко падает всего лишь до двойки.

  • теплоизоляцию и инсоляцию помещений;
  • площадь комнат;
  • количество проживающих в коттедже;
  • общие климатические условия местности, где стоит дом.

Для большинства домов на каждые десять квадратных метров необходимо порядка 0,7 кВт мощности теплового насоса. Но все здесь достаточно условно. Если потолки выше 2,7 м или стены и окна плохо утеплены, то тепла потребуется больше.

Производителей тепловых насосов воздух-воздух немало и в Азии и в Европе.

Хорошие отзывы имеют системы от Daikin, Dimplex, Hitachi, Vaillant, Mitsubishi, Fujitsu, Carrier, Aertec, Panasonic и Toshiba. Практически все их модели адаптированы к отечественным условиям эксплуатации и неплохо себя зарекомендовали.

Даже при перепадах напряжения они не ломаются, продолжая после включения электричества работать исправно.

Цена на ходовые воздушные теплонасосы варьируется в диапазоне от 90 до 450 тысяч рублей. Здесь многое зависит не только от мощности агрегата, но и от дополнительного функционала и страны изготовления.

Отдельные модели дополняют:

• фильтрами очистки и обеззараживания воздуха;
• резервными нагревателями;
• электрогенераторами;
• GSM-модулями для управления системой;
• ионизаторами и озонаторами.

Практика показывает, что при морозах ниже -15 °С в обогреваемых только тепловым воздушным насосом помещениях становится прохладно. И без дополнительного обогревателя комфортом в комнатах откровенно не пахнет.

Однако в южных регионах, где подобные заморозки редки, ТН вполне эффективен и оправдывает потраченные деньги с лихвой за счет экономии энергоресурсов.

Самоделка из старого холодильника

Из отдельных компрессоров и конденсаторов своими руками собрать тепловой насос воздух-воздух без специализированных инженерных познаний достаточно сложно. Но для небольшой комнаты или теплицы можно воспользоваться старым холодильником.

Для этого необходимо в передней дверке холодильника проделать два отверстия. Через первое в морозилку будет поступать уличный воздух, а по второму нижнему – выводиться обратно на улицу.

При этом за время прохождения по внутренней камере он будет отдавать часть имеющегося в нем тепла фреону.

Также можно холодильную машину попросту встроить в стену открытой дверью наружу, а теплообменником сзади – в помещение. Но при этом следует учитывать, что мощность такого обогревателя будет небольшой, а электроэнергии он потребляет немало.

Воздух в помещении нагревается от теплообменника сзади холодильника. Однако подобный тепловой насос способен работать только при наружных температурах не ниже плюс пяти по Цельсию.

Эта бытовая техника предназначена для эксплуатации исключительно в помещениях.

Монтаж теплонасоса воздух-воздух предельно прост. Необходимо установить внешний и внутренний блоки, а потом соединить их меж собой контуром с теплоносителем.

Первая часть системы устанавливается на улице: прямо на фасаде, кровле либо рядом со зданием. Вторую в доме можно разместить на потолке или стене.

Наружный блок рекомендуется монтировать в нескольких метрах от входа в коттедж и подальше от окон, не стоит забывать о производимом вентилятором шуме.

А внутренний устанавливается так, чтобы поток теплого воздуха из него равномерно распространялся по всей комнате.

Если тепловым насосом воздух-воздух планируется отапливать дом с несколькими комнатами на разных этажах, то придется обустраивать систему вентиляционных каналов с принудительным нагнетанием.

В этом случае лучше заказать проект у компетентного инженера, иначе мощности ТНа может не хватить на все помещения.

Электросчетчик и защитное устройство должны выдерживать пиковые нагрузки, создаваемые тепловым насосом. При резком похолодании за окном компрессор начинает потреблять электричества в разы больше, чем обычно.

Лучше всего для подобного воздушного обогревателя проложить отдельную линию снабжения от распределительного щитка.

Особое внимание следует уделить монтажу трубок для фреона. Даже малейшая стружка внутри может повредить компрессорное оборудование.

Здесь без навыков пайки меди не обойтись. Заправку хладогена вообще стоит доверить профессионалу, чтобы избежать потом проблем с его утечками.

Пошаговая инструкция по изготовлению теплового насоса из холодильника описана в этой статье.

Выводы и полезное видео по теме

Принцип работы тепловой сплит-системы «воздух-воздух»:

Воздушный тепловой насос в системе отопления двухэтажного дома:

Кондиционер-инвертор или тепловой воздушный насос – что лучше?

Тепловые насосы, работающие по принципу «воздух-воздух», являются высокоэффективными устройствами. Они просты в обслуживании, удобны в эксплуатации и экономичны.

В продаже сейчас огромный ассортимент подобных систем, для любого дома можно подобрать отопительную установку. Надо лишь грамотно рассчитать ее мощность, тогда она эффективно прослужит долгие годы.

А что вы думаете по поводу эффективности и целесообразности использования тепловых насосов “воздух-воздух”? Делитесь своим мнением, оставляете отзывы об использовании агрегатов и задавайте вопросы. Форма для комментариев расположена ниже.

Источник

Оцените статью