Литий-ионный аккумулятор — советы и правила пользования
Li-ion аккумулятор — советы, помощь, рекомендации, правила и инструкция
Из данной статьи вы узнаете, как правильно заряжать ваш литий-ионный аккумулятор, как часто и как долго. А также прочитаете советы по эксплуатации АКБ, рекомендации и правила. В общем, все, что необходимо знать о Li-ion аккумуляторе мы собрали для вас в одну статью-инструкцию.
В наше время портативная техника встречается буквально на каждом шагу. Ее значимость трудно оценить. Современная жизнь диктует свои условия, быть всегда в курсе событий просто необходимо современному человеку, — проверить электронную почту, совершить важный звонок, да и просто скоротать время играя в игры, или слушая mp3-плеер, помогают цифровые помощники. Но, как известно, вся эта идиллия была бы просто невозможна без портативных источников питания. Самым популярным источником энергии в наше время остается литий-ионный аккумулятор. Соотношение габаритов, емкости и цены, а также надежности в эксплуатации по праву сделали их лидерами среди портативных источников питания.
Практически каждый раз приобретая технику, можно услышать от продавца советы по использованию литий-ионных батарей, точнее о их первом шаге во взрослую жизнь. Это и первая зарядка в течении 15 часов, и 3 — 5 полных рабочих цикла, иногда советуют заряжать и разряжать аккумулятор полностью, в общем советов хоть отбавляй, а вот где истина, сейчас попробуем разобраться.
Основные правила ухода за аккумуляторными батареями, обычно, прописаны в инструкции к устройству которое от них питается. Не поленитесь прочитать инструкцию перед началом эксплуатации, а не когда гаджет начинает сбоить, как обычно это делается у нас. И касается это не только эксплуатации батареи.
По поводу первой зарядки в течении 12 часов, выдуманное утверждение, потому как электронная система защиты BMS попросту не даст аккумулятору заряжаться больше положенного времени.
Совет по поводу нескольких рабочих циклов (полностью зарядить аккумулятор и разрядить, дабы он «запомнил» истинную свою емкость), литий-ионные аккумуляторы обладают замечательной «памятью», и запоминают все с первого раза. Может кому-то покажется, что первые несколько дней устройство, будь-то фотоаппарат, мобильник, или что-то иное, быстро разряжается, я советую присмотреться к детям, первые несколько дней они тоже от новой игрушки не отходят, но со временем просто забывают о ней. Здесь мы видим то же самое, пока разберешься в устройстве, пока похвастаешься знакомым, при интенсивном использовании батарея, естественно, садится быстрее. По прошествии некоторого времени устройство входит в свой рабочий режим, использование происходит только по необходимости, а это положительно сказывается на автономности.
Полный цикл заряда/разряда требовался никель-кадмиевым аккумуляторам, они могли при неполном заряде/разряде терять свою номинальную емкость. К литий-ионным батареям это не относится. К тому же полный разряд просто противопоказан литий-ионным аккумуляторам, правда электронная система защиты просто не даст аккумулятору полностью разрядится, но, представьте ситуацию, — разряженная батарея лежит долгое время, заряд естественно утечет, и система защиты попросту заблокирует дальнейшую работу аккумулятора. Избыточный заряд, кстати, тоже вреден, но за этим следит все та же система защиты. Иногда могут посоветовать производить заряд батареи как угодно, но, главное что бы раз в недельку производился полностью заряд (для восстановления памяти аккумулятора). Этот совет актуален для никель-металлгидридных аккумуляторов, у них то же имеется так называемая «память», но, она восстанавливается полностью, в отличии от никель-кадмиевых, после одного-двух полных циклов заряда. Для литий-ионных батарей такой совет может быть актуален только в случае долгого неиспользования батареи.
Продолжительность жизни
Продолжительность жизни литий-ионных батарей зависит как от циклов заряда/разряда, так и от времени использования. Дело в том, что пролежавший год в шкафу аккумулятор потеряет в среднем 5-10% емкости, поэтому рекомендовано при покупке портативной техники обращать внимание на дату выпуска батареи.
Продолжительность жизни от колличества циклов заряда наглядно показана в таблице:
Глубина заряда | Количество циклов (продолжительность жизни) |
100% | 500 |
50% | 1500 |
25% | 2500 |
10% | 4700 |
Как видно, чем меньше мы заряжаем аккумулятор, тем дольше он нам будет служить, хотя 500 циклов — это около 3 лет использования (при условии что зарядка батареи происходит раз в пару дней), как по мне — устройство морально устареет быстрее, чем аккумулятор выйдет из строя …
Температурный режим и хранение
Оптимальным температурным режимом для литий-ионных аккумуляторов является +20 градусов. Стоит помнить, что понижение температуры сказывается на отдаче тока, а при повышении активизируется «процесс старения».
Заряжать батарею стоит только при плюсовых температурных режимах, в противном случае гарантирован выход аккумулятора из строя. Оптимальным температурным режимом хранения неиспользуемого аккумулятора является температура +5 градусов. Батарея заряжается до уровня 40 — 50%, герметично упаковывается, и в холодильник, только не в морозилку, там температура намного ниже рекомендуемой.
Итак, сделаем вывод:
- При покупке обязательно проверяйте дату выпуска батареи.
- Произведите полный цикл заряда перед использованием, обычно это составляет от 1,5 — 2 часов, больше заряжать смысла нет.
- Постарайтесь избегать полного заряда/разряда батареи, это положительно скажется на долговечности.
- Не стоит оставлять на долгое время разряженный аккумулятор, можете потерять его безвозвратно.
- Не стоит производить заряд литий-ионных батарей при отрицательны температурах, выход из строя обеспечен.
- При долгом хранении извлеките аккумулятор из устройства, и поместите в прохладно место.
- При хранении периодически заряжайте батарею, предварительно прогрев ее до комнатной температуры.
Следуя этим нехитрым советам вы обеспечите долгую работу вашей АКБ и, следовательно, вашему устройству.
Внимание!
- Используйте аккумуляторы только по назначению.
- Не разбирайте и не ломайте аккумуляторы.
- Не подвергайте аккумуляторы нагреву и воздействию огня.
- Избегайте воздействия прямого солнечного света.
- Не допускайте короткого замыкания аккумуляторов.
- Не храните аккумуляторы беспорядочно в коробке или ящике, где они могут замкнуться друг на друга или другие металлические предметы.
- Не подвергайте аккумуляторы механическим ударам.
Источник
Наблюдения за поведением температуры при заряде и разряде Li-Ion аккумуляторов
Благодаря своей высокой удельной емкости, литий-ионные аккумуляторы постепенно вытесняют свинцовые (SLA) и никель-металл-гидридные (NiMH) из многих стационарных и портативных приложений. Но, по мере создания более мощных литиевых аккумуляторов, все острее встает вопрос управления потоками тепла при заряде и разряде.
Повышение температуры в литий-ионных аккумуляторах всегда было основной проблемой для конструкторов. Для большинства литий-ионных аккумуляторов предельная температура в режиме заряда установлена равной 45 °C, а в режиме разряда – 60 °C. Эти границы можно сдвинуть немого вверх, но ценой будет уменьшение срока службы аккумуляторов. А в худшем случае это может привести к повреждению, или даже воспламенению элементов аккумулятора. Новые аккумуляторы на основе LiFePO4 обещают расширить границы предельных температур заряда и разряда, но ограничения все равно останутся.
Вызывающая нагрев литий-ионных аккумуляторов энергия имеет несколько источников. Во время, как заряда, так и разряда, компоненты электронных схем, расположенные вблизи аккумулятора, отдают тепло в его элементы. Это особенно существенно во время заряда, так как заряд обычно осуществляется от импульсного источника питания с контроллером, который реализует алгоритм CC/CV (заряд постоянным током/постоянным напряжением). Не менее 10% энергии источника питания теряется в виде тепла, которое различными путями, в частности через выводы, передается в аккумулятор. В некоторых схемах заряда КПД не превышает 70%.
Другими источниками тепла являются схемы защиты аккумулятора и указателей уровня заряда. К таким источникам тепла относятся термисторы с положительным температурным коэффициентом (PTC), термопредохранители (TCO – thermal cutoff fuse), электронные предохранители, MOSFET первичной защиты и токовый шунт указателей уровня заряда (Рис. 1). При больших токах нельзя не учитывать и сопротивление никелевых полосок, соединяющих элементы аккумуляторной батареи.
Рис. 1. | Источниками тепла внутри аккумулятора являются термистор и термовыключатель, электронный предохранитель, MOSFET в схеме первичной защиты, и токоизмерительный шунт в измерителе уровня заряда. |
Надписи на рисунке | |
Overcurrent | Перегрузка по току |
Overtemperature | Перегрев |
PTC | Термистор |
TCO | Термовыключатель |
Secondary safety | Вторичная защита |
Non-resistable fuse | Нерезистивный предохранитель |
Overvoltage protection | Защита от повышенного напряжения |
Overvoltage | Повышенное напряжение |
Undervoltage | Пониженное напряжение |
Unbalance | Разбаланс |
Protection MPSFETs | MOSFET транзисторы защиты |
Balancing and primary safеty | Балансировка и первичная защита |
Shunt | Шунт |
Capacity and status | Емкость и статус |
Gas gauge | Измеритель уровня заряда |
Большинство компонентов, через которые проходит ток, имеют резистивный характер. Выделяемое компонентом тепло пропорционально квадрату протекающего через него тока (P = R·I 2 ). При небольших (менее 1 А) токах заряда/разряда на сопротивлениях включенного защитного MOSFET транзистора и токового шунта тепла выделяется немного. Но при больших токах эти сопротивления становятся определяющими. Совсем нередко Li-Ion аккумуляторы отдают ток 10 А, а заряжаются током 5 А. При таких токах даже самое незначительное сопротивление может за несколько часов заряда или разряда внести существенный вклад в повышение температуры аккумулятора.
Взгляд на элементы аккумулятора
Источники тепла, не относящиеся к электронным компонентам, часто не принимают во внимание. Между тем, обладают сопротивлением внутреннее устройство защиты от перегрузки, анод и катод, и через них так же протекает ток, вызванный химическими реакциями в элементах батареи.
Для большинства Li-Ion аккумуляторов производители указывают внутренне сопротивление в диапазоне от 80 до 100 мОм. Это сопротивление может быть серьезным источником тепла, когда заряд и разряд производятся максимальными токами. Сейчас на рынок поставляются аккумуляторы с максимальным током разряда 10C … 20C. (1C – ток, численно равный емкости аккумулятора в А·ч, например для аккумулятора 2400 мА·ч, 1C = 2.4 А). Конечно, тока 20C аккумулятор долго не выдержит, но и за короткое время его температура может повыситься очень сильно.
Почти полностью игнорируются химические реакции в элементах аккумуляторной батареи. Реакция, которая происходит во время заряда ячейки литий-ионной батареи, является эндотермической, т.е., она поглощает тепло. Но в термодинамике не бывает бесплатных обедов, и при разряде тепло выделяется. В 1995 году в Центральном научно-исследовательском институте электроэнергетики (CRIEPI) с помощью калориметра провели классические исследования химических реакций в Li-Ion аккумуляторах. Рисунок 2 взят из доклада, составленного по результатам этих исследований (см. http://criepi.denken.or.jp/en/e_publication/a1996/96seika29.html).
Рис. 2. | Реакция, происходящая при заряде Li-Ion аккумуляторов, является эндотермической (A), а при разряде – экзотермической. Обратите внимание, что на последнем этапе разряда выделение температуры резко увеличивается, сигнализируя о быстром росте выходного сопротивления аккумулятора перед наступлением полного разряда. |
Надписи на рисунке | |
Charge | Заряд |
Discharge | Разряд |
Voltage (V) | Напряжение (В) |
Cell voltage | Напряжение на ячейке аккумулятора |
Heat flow (mW) | Тепловой поток (мВт) |
Time (hours) | Время (час) |
На графике тепловые потоки показаны на фоне цикла заряда одиночного Li-Ion элемента, и следующего за ним цикла разряда. Обозначенный буквой «A», начальный участок графика иллюстрирует эндотермическую природу химической реакции заряда. Область разряда, отмеченная буквой «B», совершенно очевидно, имеет экзотермический характер. Но что интересно, вблизи конца области разряда скорость выделения тепла резко возрастает, что указывает на быстрое увеличение внутреннего сопротивления элемента перед полным разрядом. (Заметим, что заряд и разряд в этих экспериментах выполнялись постоянным током).
Эндотермическая составляющая происходящих в аккумуляторе химических процессов весьма незначительна по сравнению с остальными источниками тепла. В любом случае, преобладающим будет влияние элементов, выделяющих тепло, и температура аккумулятора при заряде будет повышаться.
Строго экзотермический характер химической реакции при разряде может вызвать сильный нагрев аккумулятора в конце разряда. Это усугубляется тем, что мощность, забираемая от аккумулятора, как правило, постоянна, и для поддержания постоянной мощности ток в конце разряда должен увеличиваться. При этом все резистивные составляющие элемента батареи начинают выделять еще больше тепла.
Аспекты конструирования
Надлежащим образом сконструированная аккумуляторная батарея должна содержать устройство защиты от перегрева. В большинстве схем первичной и вторичной защиты литий-ионных аккумуляторов содержатся MOSFET транзисторы, которые открываются, если температура становится слишком высокой (или, если нужно, слишком низкой). Как показано на Рис. 1, некоторые первичные и вторичные схемы защиты могут открывать электронные предохранители. Это происходит лишь в крайнем случае, так как подобные предохранители не могут самовосстанавливаться, и открывшись, отключают батарею аккумуляторов.
При конструировании литий ионных аккумуляторов для больших токов нагрузки необходимо принимать во внимание множество факторов. Следует предусмотреть отвод тепла от резистивных элементов электронной схемы, и от самих элементов батареи. При очень больших токах, характерных, например, для аккумуляторов транспортных средств, может потребоваться воздушное, а может быть, и жидкостное охлаждение аккумуляторов.
Для уменьшения разогрева самих аккумуляторов, разработчики соединяют в батарею несколько элементов параллельно, снижая, таким образом, ток через каждый элемент. Но это порождает и проблему, связанную с разбросом параметров элементов, из-за чего ток может течь из одного элемента в другой. Проблема решается установкой в батарею дополнительных PTC термисторов, что усложняет и удорожает аккумулятор.
Литий-ионные аккумуляторы становятся все мощнее и занимают ниши, в которых раньше доминировали свинцовые и никелевые аккумуляторы. Это требует все более серьезного отношения разработчиков аккумуляторов к вопросам выделения тепла. Следствием игнорирования этих вопросов будет, как минимум, плохая батарея, а в худшем случае, небезопасная и ненадежная.
Литература
- Use Cell Balancing To Enable Large-Scale Li-ion Batteries (Использование балансировки элементов в мощных Li-Ion аккумуляторах)
- Changes To IEEE 1625 Establish A High Bar For Battery Design (Изменения в стандарте IEEE 1625 поднимают планку проектирования аккумуляторов)
- Mind Your Thermal Management To Improve Reliability (Для повышения надежности не забывайте о контроле температуры)
Перевод: AlexAAN по заказу РадиоЛоцман
Источник