Температура литиевого аккумулятора при зарядке

Наблюдения за поведением температуры при заряде и разряде Li-Ion аккумуляторов

Благодаря своей высокой удельной емкости, литий-ионные аккумуляторы постепенно вытесняют свинцовые (SLA) и никель-металл-гидридные (NiMH) из многих стационарных и портативных приложений. Но, по мере создания более мощных литиевых аккумуляторов, все острее встает вопрос управления потоками тепла при заряде и разряде.

Повышение температуры в литий-ионных аккумуляторах всегда было основной проблемой для конструкторов. Для большинства литий-ионных аккумуляторов предельная температура в режиме заряда установлена равной 45 °C, а в режиме разряда – 60 °C. Эти границы можно сдвинуть немого вверх, но ценой будет уменьшение срока службы аккумуляторов. А в худшем случае это может привести к повреждению, или даже воспламенению элементов аккумулятора. Новые аккумуляторы на основе LiFePO4 обещают расширить границы предельных температур заряда и разряда, но ограничения все равно останутся.

Вызывающая нагрев литий-ионных аккумуляторов энергия имеет несколько источников. Во время, как заряда, так и разряда, компоненты электронных схем, расположенные вблизи аккумулятора, отдают тепло в его элементы. Это особенно существенно во время заряда, так как заряд обычно осуществляется от импульсного источника питания с контроллером, который реализует алгоритм CC/CV (заряд постоянным током/постоянным напряжением). Не менее 10% энергии источника питания теряется в виде тепла, которое различными путями, в частности через выводы, передается в аккумулятор. В некоторых схемах заряда КПД не превышает 70%.

Читайте также:  Как узнать батарея или аккумулятор

Другими источниками тепла являются схемы защиты аккумулятора и указателей уровня заряда. К таким источникам тепла относятся термисторы с положительным температурным коэффициентом (PTC), термопредохранители (TCO – thermal cutoff fuse), электронные предохранители, MOSFET первичной защиты и токовый шунт указателей уровня заряда (Рис. 1). При больших токах нельзя не учитывать и сопротивление никелевых полосок, соединяющих элементы аккумуляторной батареи.

Рис. 1. Источниками тепла внутри аккумулятора являются термистор и термовыключатель, электронный предохранитель, MOSFET в схеме первичной защиты, и токоизмерительный шунт в измерителе уровня заряда.
Надписи на рисунке
Overcurrent Перегрузка по току
Overtemperature Перегрев
PTC Термистор
TCO Термовыключатель
Secondary safety Вторичная защита
Non-resistable fuse Нерезистивный предохранитель
Overvoltage protection Защита от повышенного напряжения
Overvoltage Повышенное напряжение
Undervoltage Пониженное напряжение
Unbalance Разбаланс
Protection MPSFETs MOSFET транзисторы защиты
Balancing and primary safеty Балансировка и первичная защита
Shunt Шунт
Capacity and status Емкость и статус
Gas gauge Измеритель уровня заряда

Большинство компонентов, через которые проходит ток, имеют резистивный характер. Выделяемое компонентом тепло пропорционально квадрату протекающего через него тока (P = R·I 2 ). При небольших (менее 1 А) токах заряда/разряда на сопротивлениях включенного защитного MOSFET транзистора и токового шунта тепла выделяется немного. Но при больших токах эти сопротивления становятся определяющими. Совсем нередко Li-Ion аккумуляторы отдают ток 10 А, а заряжаются током 5 А. При таких токах даже самое незначительное сопротивление может за несколько часов заряда или разряда внести существенный вклад в повышение температуры аккумулятора.

Взгляд на элементы аккумулятора

Источники тепла, не относящиеся к электронным компонентам, часто не принимают во внимание. Между тем, обладают сопротивлением внутреннее устройство защиты от перегрузки, анод и катод, и через них так же протекает ток, вызванный химическими реакциями в элементах батареи.

Читайте также:  Чье производство аккумулятора ком

Для большинства Li-Ion аккумуляторов производители указывают внутренне сопротивление в диапазоне от 80 до 100 мОм. Это сопротивление может быть серьезным источником тепла, когда заряд и разряд производятся максимальными токами. Сейчас на рынок поставляются аккумуляторы с максимальным током разряда 10C … 20C. (1C – ток, численно равный емкости аккумулятора в А·ч, например для аккумулятора 2400 мА·ч, 1C = 2.4 А). Конечно, тока 20C аккумулятор долго не выдержит, но и за короткое время его температура может повыситься очень сильно.

Почти полностью игнорируются химические реакции в элементах аккумуляторной батареи. Реакция, которая происходит во время заряда ячейки литий-ионной батареи, является эндотермической, т.е., она поглощает тепло. Но в термодинамике не бывает бесплатных обедов, и при разряде тепло выделяется. В 1995 году в Центральном научно-исследовательском институте электроэнергетики (CRIEPI) с помощью калориметра провели классические исследования химических реакций в Li-Ion аккумуляторах. Рисунок 2 взят из доклада, составленного по результатам этих исследований (см. http://criepi.denken.or.jp/en/e_publication/a1996/96seika29.html).

Рис. 2. Реакция, происходящая при заряде Li-Ion аккумуляторов, является эндотермической (A), а при разряде – экзотермической. Обратите внимание, что на последнем этапе разряда выделение температуры резко увеличивается, сигнализируя о быстром росте выходного сопротивления аккумулятора перед наступлением полного разряда.
Надписи на рисунке
Charge Заряд
Discharge Разряд
Voltage (V) Напряжение (В)
Cell voltage Напряжение на ячейке аккумулятора
Heat flow (mW) Тепловой поток (мВт)
Time (hours) Время (час)

На графике тепловые потоки показаны на фоне цикла заряда одиночного Li-Ion элемента, и следующего за ним цикла разряда. Обозначенный буквой «A», начальный участок графика иллюстрирует эндотермическую природу химической реакции заряда. Область разряда, отмеченная буквой «B», совершенно очевидно, имеет экзотермический характер. Но что интересно, вблизи конца области разряда скорость выделения тепла резко возрастает, что указывает на быстрое увеличение внутреннего сопротивления элемента перед полным разрядом. (Заметим, что заряд и разряд в этих экспериментах выполнялись постоянным током).

Эндотермическая составляющая происходящих в аккумуляторе химических процессов весьма незначительна по сравнению с остальными источниками тепла. В любом случае, преобладающим будет влияние элементов, выделяющих тепло, и температура аккумулятора при заряде будет повышаться.

Строго экзотермический характер химической реакции при разряде может вызвать сильный нагрев аккумулятора в конце разряда. Это усугубляется тем, что мощность, забираемая от аккумулятора, как правило, постоянна, и для поддержания постоянной мощности ток в конце разряда должен увеличиваться. При этом все резистивные составляющие элемента батареи начинают выделять еще больше тепла.

Аспекты конструирования

Надлежащим образом сконструированная аккумуляторная батарея должна содержать устройство защиты от перегрева. В большинстве схем первичной и вторичной защиты литий-ионных аккумуляторов содержатся MOSFET транзисторы, которые открываются, если температура становится слишком высокой (или, если нужно, слишком низкой). Как показано на Рис. 1, некоторые первичные и вторичные схемы защиты могут открывать электронные предохранители. Это происходит лишь в крайнем случае, так как подобные предохранители не могут самовосстанавливаться, и открывшись, отключают батарею аккумуляторов.

При конструировании литий ионных аккумуляторов для больших токов нагрузки необходимо принимать во внимание множество факторов. Следует предусмотреть отвод тепла от резистивных элементов электронной схемы, и от самих элементов батареи. При очень больших токах, характерных, например, для аккумуляторов транспортных средств, может потребоваться воздушное, а может быть, и жидкостное охлаждение аккумуляторов.

Для уменьшения разогрева самих аккумуляторов, разработчики соединяют в батарею несколько элементов параллельно, снижая, таким образом, ток через каждый элемент. Но это порождает и проблему, связанную с разбросом параметров элементов, из-за чего ток может течь из одного элемента в другой. Проблема решается установкой в батарею дополнительных PTC термисторов, что усложняет и удорожает аккумулятор.

Литий-ионные аккумуляторы становятся все мощнее и занимают ниши, в которых раньше доминировали свинцовые и никелевые аккумуляторы. Это требует все более серьезного отношения разработчиков аккумуляторов к вопросам выделения тепла. Следствием игнорирования этих вопросов будет, как минимум, плохая батарея, а в худшем случае, небезопасная и ненадежная.

Литература

  1. Use Cell Balancing To Enable Large-Scale Li-ion Batteries (Использование балансировки элементов в мощных Li-Ion аккумуляторах)
  2. Changes To IEEE 1625 Establish A High Bar For Battery Design (Изменения в стандарте IEEE 1625 поднимают планку проектирования аккумуляторов)
  3. Mind Your Thermal Management To Improve Reliability (Для повышения надежности не забывайте о контроле температуры)

Перевод: AlexAAN по заказу РадиоЛоцман

Источник

При какой температуре работают литиевые аккумуляторы?

Допустимая температура эксплуатации Li-Ion аккумуляторов – от -20 до +50 °С (у некоторых моделей – от -40 °С). Но работа в пограничных режимах – как по температуре, так и по напряжению – негативно сказывается на способности аккумулятора запасать энергию. При эксплуатации в пограничных режимах ощутимо снижается рабочая емкость АКБ и ее ресурс. Чтобы продлить эксплуатационный ресурс литий-ионной батареи и избежать сокращения времени ее работы без подзарядки, необходимо придерживаться температурного режима, максимально комфортного для АКБ.

Лучшая температура работы Li-Ion аккумуляторов – около +20 °С. Хранить такие накопители рекомендуется в прохладных условиях – от 0 до 10 °С. Оптимальный уровень заряда для длительного хранения литий-ионных АКБ – 30–50%. Если отправить на хранение полностью заряженный аккумулятор, со временем его емкость значительно уменьшится. Если же накопитель будет храниться в глубоко разряженном состоянии, восстановить его вряд ли удастся.

Рекомендуемая температура работы литий ионного аккумулятора

Злейшие враги Li-Ion батарей – перегрев и переохлаждение. Нельзя оставлять такие устройства под воздействием прямых солнечных лучей и поблизости с источниками тепла. Вредны для литиевых накопителей и отрицательные температуры – они снижают отдаваемую энергию. Если сравнить запас отдаваемой энергии при +20 °С и других температурах, то:

  • при падении температуры до +4 °С объем отдаваемой энергии снижается на 5–7%;
  • при последующем снижении температуры ниже 0 °С – теряются 40–50% емкости, и преждевременно исчерпывается ресурс батареи.

Заряжать литиевые АКБ рекомендуется при температурах от +5 до +20 °C. Важно соблюдение температурного режима и при хранении Li-Ion аккумуляторов. Примерные потери емкости в зависимости от уровня заряда и температурного режима при хранении АКБ приведены в таблице:

t, °С

Потеря емкости при хранении АКБ с 40% уровнем заряда

Потеря емкости при хранении АКБ с полным зарядом

Источник

Допустимые диапазоны температур при заряде и разряде литий-ионных аккумуляторов

По многочисленным просьбам в дополнение к пункту 5 нашей статьи 5 практических советов по эксплуатации литий ионных аккумуляторов мы решили написать более детально о допустимых диапазонах заряда и разряда литий-ионных аккумуляторов.

Аккумуляторные батареи могут работать в достаточно широком диапазоне температур, но есть экстремумы, о которых стоит помнить все время, особенно в странах с часто меняющимся климатом и множеством часовых поясов, как, например, Россия.

Литий-ионные аккумуляторы достаточно хорошо заряжаются при низких плюсовых температурах, а также, могут быть поставлены на быстрый заряд (устройства быстрого заряда используются для заряда EV*) при диапазоне температур от 5 до 45°C. Процессы заряда и разряда хорошо протекают при высоких допустимых температурах (до 45°C), но при этом уменьшается срок жизни аккумулятора.

При температуре ниже 5°C ток зарядки необходимо понизить. Заряд недопустим при температуре ниже 0°C — при зарядке ниже 0 внешних изменений не наблюдается, но химические процессы необходимые для корректной работы аккумулятора будут нарушены, что может привести к перманентному повреждению аккумулятора.

Мы сделали визуальную шпаргалку для пользователей смартфонов с рекомендуемыми температурными диапазонами разряда и заряда при эксплуатации портативной техники, работающей на литий-ионных аккумуляторах.

Источник

Оптимальная температура эксплуатации литиевого аккумулятора – залог его долгой службы!

Статья обновлена: 2020-09-08

Литий-ионные аккумуляторы (элементы или «банки») и собранные из них батареи имеют массу конкурентных преимуществ перед накопителями других типов. Они имеют большую удельную энергию, легкий вес и низкий процент саморазряда. У них нет «эффекта памяти», поэтому перед зарядкой их не нужно разряжать до минимального значения. Они выдают высокое напряжение и эффективно сохраняют накопленную энергию, рассчитаны на срок службы около 4-6 лет и выдерживают более 500 циклов разряд-заряд.

Но чтобы уберечь литиевую АКБ от быстрого уменьшения ее эксплуатационного ресурса, нужно использовать и хранить ее в рамках рекомендованного производителем диапазона температур. Оптимальная температура хранения литиевых аккумуляторов составляет +15 °С, а лучшая температура для их эксплуатации – от +5 до +25 °С. Допустимый диапазон эксплуатационных температур значительно шире – от –20 и даже –40 (у некоторых моделей) до +50 °C.

Но использование литий-ионной батареи при минусовых значениях температуры приводит к снижению емкости, в то время как при нагреве уменьшается жизненный цикл АКБ. Работа в пограничных температурных режимах приводит к резкому ускорению процессов старения. Поэтому для продления срока службы Li-ion батареи важно беречь ее от перегрева и прямых солнечных лучей, не использовать на сильном морозе и по возможности утеплить перед эксплуатацией в зимний период.

Рабочая температура литиевых аккумуляторов

Лучшая рабочая температура для эксплуатации Li-ion аккумулятора или аккумуляторной батареи – около +20 °С. Перегрев и переохлаждение губительно действуют на химическую систему литиевых накопителей энергии. Поэтому их нельзя держать на солнце, около радиаторов отопления и других источников тепла. Вредят литий-ионным батареям и минусовые температуры – они заметно уменьшают отдаваемую энергию.

Если сопоставить, сколько энергии отдает литиевая АКБ при оптимальной температуре +20 °С и более низких значениях, то наблюдаются следующие изменения:

  1. при рабочей температуре литий-ионных аккумуляторов +4 °С отдача энергии уменьшается на 5–7%;
  2. при использовании АКБ на морозе (t

Источник

Оцените статью