- Теллурид кадмия эффективнее кремния для солнечных панелей
- Теллурий кадмиевые солнечные панели
- Все о солнечных батареях
- Принцип работы
- Типы фотоэлектрических преобразователей
- Характеристики кремниевых солнечных батарей
- Монокристалл
- Поликристалл
- Аморфный кремний
- Обзор модулей, не использующих кремний
- Полимерные и органические батареи
- Как сделать правильный выбор?
- Почему так важна эффективность?
- Заключение
- Видео по теме
Теллурид кадмия эффективнее кремния для солнечных панелей
Аризонская компания First Solar производит солнечные панели на основе теллурида кадмия и убеждена, что такие элементы гораздо эффективнее традиционных кремниевых превращают солнечные лучи в электричество. Недавно компания установила рекорд конверсии — 22,1% в лабораторных условиях, сообщает MIT Technology Review.
В полевых испытаниях элементы из теллурида кадмия показали 17% продуктивности, что сравнимо с кремниевыми панелями. Согласно последним исследованиям First Solar, их элементы могут быстро превзойти кремниевые.
Компания поставляет солнечные панели и, одновременно, разрабатывает их на крупных солнечных фермах. За последнее десятилетие, когда благодаря фабрикам Китая цены на солнечные элементы упали, First Solar вкладывала деньги в сложные и дорогие технологии. Компания потратила около 4% своей выручки на исследования и разработки, что почти в два раза превышает среднюю по индустрии сумму.
Кремниевые элементы с кристаллической структурой приостановили рост конверсии примерно на 20% в лабораторных условиях и 16% — в полевых. По недавнему заявлению First Solar, компания способна достигнуть за два года эффективности в 24%, а в реальных условиях — 19% за три года. Теллурид кадмия особенно хорошо себя показал в жарких и влажных регионах юго-востока США и Южной Азии, где в ближайшее время ожидается рост рынка.
Кроме того, благодаря технологии осаждения из паровой фазы тонкие панели First Solar легче производить — весь процесс, от прозрачного стекла до конечного продукта, занимает всего 3,5 часа, а на изготовление кремниевого элемента уходит два дня.
Источник
Теллурий кадмиевые солнечные панели
Ряды синих солнечных панелей, которыми пестреют поля и крыши, обычно сделаны из кристаллического кремния – этот проверенный годами полупроводник сегодня находится практически в каждом электронном девайсе.
За последние 10 лет ученые Университета Штата Колорадо (CSU) провели ряд новаторских исследований по улучшению производительности и уменьшению стоимости солнечной энергии, изготовив и протестировав новые решения, которые улучшают свойства кремния. Теперь они сконцентрировались на материале, который может заменить кремний: он называется теллурид кадмия.
Команда CSU заявила о кардинальном прорыве в области тонкопленочных солнечных батарей из теллурида кадмия, но их улучшение продвинулось еще дальше благодаря другому материалу – селену. Результат исследований был опубликованы в журнале Nature Energy.
«Наша работа полностью раскрывает понимание того, что произойдет, если мы добавим к теллуриду кадмия селен». — рассказывает один из соавторов исследования Курт Барт, который является директором Next Generation Photovoltaics Center.
До сих пор было не совсем ясно, почему использование селена рекордно повышает эффективность батарей на основе теллурида кадмия до уровня в чуть более 22%. Международная группа ученых под руководством Курта Барта раскрыла этот секрет. Ее эксперименты показали, что селен способен преодолеть последствия дефектов на уровне атомов в кристаллах теллурида кадмия, проложив дорогу для более массовых и доступных солнечных технологий.
Для тонкоплёночных фотоэлектрических панелей из теллурида кадмия используется в сто раз меньше материала, чем для обычных на основе кремния. Они более просты в изготовлении, а солнечный свет поглощают на волнах практически идеальной длины. Электричество, которое получается с их помощью – самое дешевое во всей солнечной индустрии, а зачастую и доступнее других источников на основе ископаемого топлива.
Как сообщается в научной статье, электроны, генерируемые при попадании на фотоэлементы с селеном, имеют гораздо меньше шансов на потерю из-за дефектов материалов, которые обычно образуются между гранями кристаллов по мере их роста. Таким образом каждый отдельный элемент производит намного больше энергии. Передовые методы помогли инженерам CSU проследить это неожиданное явление с помощью измерения количества света, отражаемого селено-содержащими батареями.
Ученые распределили селен по солнечной панели неравномерно и сравнили люминесценцию, выделяемую областями, которые почти не содержат селена и теми областями, где он был сконцентрирован.
«Хорошие материалы для фотоэлементов, которые почти не содержат дефектов, излучают свет очень ярко и эффективно, — говорит автор статьи Том Фидучия, студент Университета Лофборо. — Очевидно, что области, богатые селеном, светятся гораздо ярче, чем чистый теллурид кадмия, а эффект от него поразительно силен».
Источник: colostate.edu
А вы что думаете по этому поводу? Дайте нам знать – напишите в комментариях!
Понравилась статья? Поделитесь ею и будет вам счастье!
Источник
Все о солнечных батареях
Планета Земля и вся зародившаяся на ней жизнь прошла не малый путь эволюции. Солнце обеспечивало энергией все живое и неживое, на протяжении всего периода существования планеты. В 21 столетии мы научились неплохо взаимодействовать с солнечным светом и использовать его в качестве альтернативной энергетики. Для этого инженерами были разработаны и внедрены в эксплуатацию солнечные батареи.
Принцип работы
Конструкция множества солнечных батарей сделана по принципу, что они в физическом смысле являются фотоэлектрическими преобразователями. Электрогенерирующий эффект проявляется в месте «p–n» перехода.
Чтобы сконцентрировать в себе солнечную энергию, полупроводники выполнены в форме панелей. По этой причине эти конструкции получили одноимённое название в независимости от их формы (гибкие или статичные) — солнечные панели.
По какому принципу работают солнечные панели и системы на их основе? Панель включает в себя 2 кремневые пластины с различимыми друг от друга свойствами. Процесс вырабатывания электроэнергии происходит так:
- Воздействие солнечных лучей на первую приводит к недостаче электронов.
- При воздействии на вторую пластину, та получает избыток электронов.
- К пластинам подведены полосы из меди, проводящие ток.
- Полосы подключаются к преобразователям напряжения с встроенными АКБ.
Основа — это кремниевые пластины. Но чтобы данную конструкцию использовать в качестве источника бесперебойного питания (а не только во время солнцестояния), к ней подключаются не дешевые аккумуляторы (с их помощью подключенные к сети объекты расходуют энергию ночью).
В промышленности конструкция для поглощения энергии Солнца сделана из многочисленных ламинированных фотоэлектрических ячеек, связанных друг с другом и поставленных на гибкой или жесткой подставке.
Коэффициент полезного действия конструкции вычисляется исходя из применения разных факторов. Основными являются — чистота задействованного кремния и размещение кристаллов.
Процесс очищения кремния довольно сложен, да и расположить кристаллы в единой направленности не легко. Сложность процессов, отвечающих за повышение КПД конвертируются в высокую цену за подобное оборудование.
Солнечные панели — перспективное направление в энергетике, поэтому в исследования новых проектов в этой сфере инвестируется многомиллиардные вложения. Каждый квартал коэффициент фотоэлектрического преобразования повышается, благодаря манипуляциям с проводниками и элементами конструкции. При этом, за основу может браться не только кремний.
Типы фотоэлектрических преобразователей
В промышленности существует классификация солнечных батарей по типу устройства и применяемого фотоэлектрического слоя.
По устройству делятся на:
- панели из гибких элементов, они же гибкие;
- панели из жестких элементов.
При развертывании панелей чаще всего используются гибкие тонкоплёночные. Они укладываются на поверхность, игнорируя некоторые неровные элементы, что делает данный тип устройства — более универсальным.
По типу фотоэлектрического слоя для последующего преобразования энергии панели делятся на:
- Кремниевые (монокристалл, поликристалл, аморфные).
- Теллурий–кадмиевые.
- Полимерные.
- Органические.
- Арсенида–галлиевые.
- Селенид индия– меди– галлиевые.
Хотя разновидностей множество, львиную долю в потребительском обороте имеют кремниевые и теллурий–кадмиевые солнечные панели. Эти два типа выбирают из–за соотношения кпд/цена.
Характеристики кремниевых солнечных батарей
Кварцевый порошок — это сырьевой материал для кремния. Данного материала на Урале и Сибири очень много, поэтому именно кремниевые солнечные панели есть и будут в большем обиходе, чем остальные подтипы.
Монокристалл
Монокристаллические пластины (mono–Si) содержат в себе синевато–темный цвет, равномерно размещенный на всей пластине. Для таких пластин применяется максимально очищенный кремний. Чем он чище, тем солнечные батареи имеют КПД выше и самую наибольшую стоимость на рынке таких устройств.
- Наивысший КПД — 17–25%.
- Компактность — задействование сравнительно с поликристаллом меньшей площади для развертывания оснащения в условиях тождества мощности.
- Износостойкость — бесперебойная работа выработки электроэнергии без замены основных комплектующих обеспечивается за четверть века.
- Чувствительность к пыли и грязи — осевшая пыль не дает батареям работать со светом от светила и соответственно уменьшает КПД.
- Высокая цена равна увеличенному сроку окупаемости.
Так как mono–Si нуждаются в ясной погоде и лучах Солнца, панели устанавливаются на открытых местах и поднятые на высоту. Насчет местности, то предпочтение отдается местности, в которой ясная погода обыденность, а количество солнечных дней приближено к максимальному.
Поликристалл
Поликристаллические пластины (multi–Si) наделены неравномерным синим окрасом из–за разнонаправленности кристаллов. Кремний не настолько чист, как в используемых mono–Si, поэтому КПД несколько ниже, вместе со стоимостью таких солнечных батарей.
Положительные факты поликристалла:
- Коэффициент полезного действия 12–18%.
- При неблагоприятной погоде КПД лучше, чем у Mono–Si.
- Цена данного агрегата меньше, а сроки окупаемости намного ниже.
- Ориентация на солнце не принципиальна, поэтому можно размещать их на крышах различных строений.
- Длительность эксплуатации — эффективность поглощения энергии и аккумулирования электричества падает до 20% спустя 20 лет непрерывной эксплуатации.
- КПД уменьшен до 12–18%.
- Требовательность к месту. Для развертывания нормальной станции выработки электроэнергии нужно больше места, чем при задействовании батареи из монокристалла.
Аморфный кремний
Технология производства панелей существенно отличается от предыдущих двух. В приготовлении задействованы горячие пары, опускающиеся на подложку без образования кристаллов. При этом используется меньше производственного материала и это учитывается при формировании цены.
- Коэффициент полезного действия — 8–9% во втором поколении и до 12% в третьем.
- Высокий коэффициент полезного действия при не совсем солнечной погоде.
- Возможность использования на гибких модулях.
- Эффективность батарей не падает вниз при повышении температуры, что позволяет монтировать их на всякие поверхности с нестандартной формой.
Основным недостатком можно считать меньший КПД (если сравнивать с иными аналогами), в связи с чем требуется большая площадь для получения сопоставимой отдачи от оборудования.
Обзор модулей, не использующих кремний
Солнечные панели, изготавливаемые из более дорогих аналогов, достигают коэффициента в 30%, они могут быть в несколько раз дороже аналогичных систем на основе кремния. Некоторые из них всё же имеют более низкий КПД, при этом обладая возможностью работать в агрессивной среде. Для изготовления таких панелей применяется чаще всего теллурид кадмия. Применяются и другие элементы, но реже.
Перечислим основные преимущества:
- Высокий КПД, от 25 до 35%, с возможностью достигнуть, в относительно идеальных условиях даже 40%.
- Фотоэлементы стабильны даже при температурах до 150 °C.
- Концентрация света от светила на маленькой панели позволяет обеспечить водяной теплообменник энергией, в результате чего образовывается пар, который вращает турбину и генерирует электричество.
Как и говорили ранее — минусом является высокая цена, но в некоторых случаях они являются лучшим решением. Например, в экваториальных странах, где поверхность модулей может нагреться до 80 °C.
Полимерные и органические батареи
Модули, созданные на основе полимерных и органических материалов, получили своё распространение в последние 10 лет, они создаются в виде плёночных конструкций, толщина которых редко превышает 1 мм. Их КПД близок к 15%, а стоимость в несколько раз ниже кристаллических аналогов.
- Низкая стоимость производства.
- Гибкий (рулонный) формат.
Недостатком панелей из этих материалов является снижение эффективности на длительной дистанции. Но этот вопрос ещё исследуется и производство постоянно модернизируется, чтобы исключить минусы, которые могут проявиться в существующем поколении такого вида батарей через 5–10 лет.
Как сделать правильный выбор?
Для владельцев домов, расположенных на Европейском континенте выбор довольно прост — это поликристалл либо монокристалл из кремния. При этом, при ограниченных площадях стоит сделать выбор в пользу монокристаллических панелей, а при отсутствии таких ограничений — в пользу поликристаллических батарей. При выборе производителя, технических параметров оборудования и дополнительных систем стоит обратиться к компаниям, которые занимаются как продажей, так и установкой комплектов. Учитывайте, что вне зависимости от производителя — качество систем у «топовых» производителей вряд ли будет отличаться, поэтому не дайте себя обмануть, изучая ценовую политику.
Если решили заказать установку «солнечной фермы» под ключ, учтите, что сами панели в пакете таких услуг займут всего 1/3 общей стоимости, а окупаемость вплотную приблизится к отметке «10 лет»:
- Бюджетным, но эффективным выбором станут панели от компании Amerisolar, поликристаллическая модель носит название AS–6P30 280W, имеет размер 1640х992 мм и выдаёт, соответственно — 280 Вт мощности. КПД модуля составляет 17.4%. Из минусов — гарантия всего 2 года. Но стоимость ∼7 тыс. рублей.
- Аналогичным по мощности будет модуль RS 280 POLY от китайской Runda, стоимость ещё ниже — около 6 тыс. рублей.
- Если место ограничено, стоит обратить внимание на продукт компании LEAPTON SOLAR — LP72–375M PERC, КПД составляет 19.1%, и при размерах 1960х992 мм получаем на выходе 375 Вт энергии. Стоимость такой батареи будет в районе 10 тыс. рублей.
- Ещё одним эффективным вариантом с меньшими габаритами, 1686х1016 мм будет новинка от LG — NeOn 340 W. «Не он» может похвастаться КПД в 19.8%, но не может похвастаться стоимостью, она будет более чем в половину выше предыдущего образца — примерно 16 тысяч рублей.
- Для тех, кто хочет обратить своё внимание на премиальный сегмент, тайваньская компания BenQ выпустила на рынок монокристальный модуль SunForte PM096B00 333W, выдающий на выходе 333 Вт мощности, имеющий номинальный КПД в 20.4% при размерах 1559х1046 мм. Этот модуль получил впечатляющую стоимость в почти 35 тысяч рублей.
Почему так важна эффективность?
Большое значение эффективность приобретает при расчёте площади, которую вы можете использовать под систему солнечных батарей. При сопоставимых размерах описанных модулей от Amerisolar AS–6P30 280W (1.63 квадратных метра) и NeOn 340 W от LG (1.71 квадратных метра), разница в мощности на один квадратный метр на выходе будет составлять 15.6%. С одной стороны, это может показаться не очень эффективным, учитывая разницу в цене более чем в два раза, но в случае с ограниченным пространством или более агрессивной внешней средой, возможно, сдвинет ваш выбор в пользу этого известного производителя.
Увеличенный коэффициент полезного действия подчеркивает не только эффективность технологии изготовления, но и качественные материалы, используемые при изготовлении. Это сможет сказаться на сроках работы устройств, на устойчивость панелей к так называемой деградации. Не стоит забывать также и про гарантийные обязательства производителя. Имея представительства и гарантийные сервисы почти во всех уголках мира — LG сможет похвастаться более лояльным подходом к клиентам и выполнением своих обязательств.
Заключение
Если рассматриваете установку солнечной станции в качестве инвестиций, выбор моделей с меньшим КПД будет более оправданным. Если целью является использование системы в домашнем хозяйстве, по принципу «установил и забыл», мы порекомендуем обратить внимание на панели от более именитых производителей, это позволит получить большую отдачу от станции в долгосрочной (более 5 лет) перспективе.
Видео по теме
Источник