- Производство солнечной батареи: технология и оборудование
- Кремниевые солнечные батареи
- Виды элементов
- Монокристаллический тип
- Изготовление поликристаллических элементов
- Элементы из аморфного кремния
- Сырье для производства солнечных батарей пленочного типа из CdTe
- Накопители лучей из селена, меди и индия
- Солнечные уловители на полимерной основе
- Химическое травление в процессе производства
- Полупроводники в солнечных батареях
- Использование плазмохимического травления
- Нанесение антиотражающего покрытия
- Контактная металлизация с лицевой стороны
- Металлизация на тыльной стороне прибора
- Изготовление солнечных батарей своими руками
- Производство солнечных батарей
- Что такое солнечная батарея
- Как устроена солнечная панель
- Разновидности кремниевых установок
- Монокристаллические
- Поликристаллические
- Панели с аморфным кремнием
- Изготовление фотоэлементов
- Производство солнечных панелей
- Производители солнечных батарей
- Зеленоградская компания ЗАО «Телеком-СТВ» (Москва и Подмосковье)
- Рязанский завод металлокерамических приборов (ЗМКП)
- Краснодарский завод «Сатурн»
- НПП «Квант»
Производство солнечной батареи: технология и оборудование
Человечество стремится перейти на альтернативные источники электрического снабжения, которые помогут сохранить чистоту окружающей среды и сократить затраты на выработку энергии. Производство солнечной батареи является современным индустриальным методом. Система электроснабжения включает в себя приемники солнечного света, аккумуляторы, контролирующие устройства, инверторы и другие приборы, предназначенные для определенных функций.
Солнечная батарея является главным элементом, с которого начинается накопление и преобразование энергии лучей. В современном мире для потребителя при выборе панели существует много подводных камней, так как промышленность предлагает большое число изделий, объединенных под одним названием.
Кремниевые солнечные батареи
Эти изделия популярны у современных потребителей. В основу их изготовления положен кремний. Запасы его в недрах широко распространены, добыча сравнительно недорогая. Кремниевые элементы выгодно отличаются уровнем производительности от других батарей солнечного света.
Виды элементов
Производство солнечных батарей из кремния ведется следующих типов:
- монокристаллический;
- поликристаллический;
- аморфный.
Различаются вышеназванные формы устройств тем, как компонуются кремниевые атомы в кристалле. Основным отличием элементов становится различный показатель коэффициента полезного действия преобразования световой энергии, который у двух первых видов находится приблизительно на одном уровне и превышает значения у приборов из аморфного кремния.
Промышленность сегодняшнего дня предлагает несколько моделей солнечных уловителей света. Отличие их состоит в том, какое применяется оборудование для производства солнечных батарей. Играет роль технология изготовления и разновидность начального материала.
Монокристаллический тип
Эти элементы состоят из силиконовых ячеек, скрепленных между собой. По способу ученого Чохральского производится абсолютно чистый кремний, из которого изготавливают монокристаллы. Следующим процессом является разрезание застывшего и затвердевшего полуфабриката на пластины толщиной от 250 до 300 мкм. Тонкие слои насыщают металлической сеткой электродов. Несмотря на дороговизну производства, такие элементы применяют достаточно широко из-за высокого показателя преобразования (17-22%).
Изготовление поликристаллических элементов
Технология производства солнечных батарей из поликристаллов состоит в том, что расплавленная кремниевая масса постепенно охлаждается. Производство не требует дорогого оборудования, следовательно, затраты на получение кремния снижены. Поликристаллические солнечные накопители имеют меньший коэффициент эффективности (11-18%), в отличие от монокристаллических. Это объясняется тем, что в процессе остывания масса кремния насыщается мельчайшими зернистыми пузырьками, что приводит к дополнительному преломлению лучей.
Элементы из аморфного кремния
Изделия относят к особому типу, так как их принадлежность к кремниевому виду исходит от наименования используемого материала, а производство солнечных батарей выполняется по технологии пленочных приборов. Кристалл в процессе изготовления уступает место кремниевому водороду или силону, тонкий слой которых покрывает подложку. Батареи имеют самое низкое значение эффективности, всего до 6%. Элементы, несмотря на существенный недостаток, имеют ряд неоспоримых преимуществ, дающих им право стоять в ряду с вышеназванными типами:
- значение поглощения оптики выше в два десятка раз, чем у монокристаллических и поликристаллических накопителей;
- имеет минимальную толщину слоя, всего 1 мкм;
- пасмурная погода не влияет на работу по преобразованию света, в отличие от других видов;
- из-за высокого показателя прочности на изгиб без проблем применяется в трудных местах.
Три вышеописанных вида солнечных преобразователей дополняются гибридными изделиями из материалов с двойственными свойствами. Такие характеристики достигаются, если в аморфный кремний включаются микроэлементы или наночастицы. Полученный материал схож с поликристаллическим кремнием, но выгодно отличается от него новыми техническими показателями.
Сырье для производства солнечных батарей пленочного типа из CdTe
Выбор материала диктуется потребностью в уменьшении стоимости изготовления и повышении технических характеристик в работе. Наиболее часто применяется светопоглощающий теллурид кадмия. В 70-е годы прошлого столетия CdTe считался основным претендентом на космическое использование, в современной промышленности он нашел широкое применение в энергетике солнечного света.
Этот материал относят к категории кумулятивных ядов, поэтому не стихают прения по вопросу его вредности. Исследования ученых установили тот факт, что уровень вредного вещества, поступающего в атмосферу, является допустимым и не наносит вреда экологии. Уровень КПД составляет всего 11%, но стоимость преобразуемой электроэнергии от таких элементов ниже на 20-30%, чем от приборов кремниевого вида.
Накопители лучей из селена, меди и индия
Полупроводниками в приборе служат медь, селен и индий, иногда допускается замещение последнего на галлий. Это объясняется высокой востребованностью индия для производства мониторов плоского типа. Поэтому выбран этот вариант замещения, так как материалы имеют похожие свойства. Но для показателя КПД замена играет существенную роль, производство солнечной батареи без галлия повышает эффективность работы устройства на 14%.
Солнечные уловители на полимерной основе
Эти элементы относят к молодым технологиям, так как они недавно появились на рынке. Полупроводники из органики поглощают свет для преобразования его в электрическую энергию. Для производства применяют фуллерены углеродной группы, полифенилен, меди фталоцианин и др. В результате получают тонкие (100 нм) и гибкие пленки, которые в работе выдают коэффициент эффективности 5-7%. Величина небольшая, но производство гибких солнечных батарей имеет несколько положительных моментов:
- для изготовления не затрачиваются большие средства;
- возможность установки гибких батарей в местах изгибов, где эластичность имеет первоочередное значение;
- сравнительная легкость и доступность установки;
- гибкие батареи не оказывают вредного воздействия на окружающую среду.
Химическое травление в процессе производства
Самой дорогой в солнечной батарее является мультикристаллическая или монокристаллическая пластина из кремния. Для максимально рационального использования кремния режут псевдоквадратные фигуры, эта же форма позволяет плотно уложить пластины в будущем модуле. После процесса резки на поверхности остаются микроскопические слои нарушенной поверхности, которые убираются при помощи травления и текстурирования, чтобы улучшить прием падающих лучей.
Обработанная подобным способом поверхность представляет собой хаотично расположенные микропирамиды, отражаясь от грани которых, свет попадает на боковые поверхности других выступов. Процедура рыхления текстуры понижает отражающую способность материала приблизительно на 25%. В процессе травления применяют серию кислотных и щелочных обработок, но недопустимо сильно уменьшать толщину слоя, так как пластина не выдерживает следующие обработки.
Полупроводники в солнечных батареях
Технология производства солнечных батарей предполагает, что основным понятием твердой электроники является p-n-переход. Если в одной пластине совместить электронную проводимость n-типа и дырочную проводимость p-типа, то в месте соприкосновения их возникает p-n-переход. Основным физическим свойством указанного определения становится возможность служить барьером и пропускать электричество в одном направлении. Именно такой эффект позволяет наладить полноценную работу солнечных элементов.
В результате проведения фосфорной диффузии на торцах пластины складывается слой n-типа, который базируется у поверхности элемента на глубине всего 0,5 мкм. Производство солнечной батареи предусматривает неглубокое проникновение носителей противоположных знаков, которые возникают под действием света. Их путь в зону влияния p-n-перехода должен быть коротким, иначе они могут при встрече погасить один другого, при этом не сгенерировав никакого количества электричества.
Использование плазмохимического травления
В конструкции солнечной батареи предусмотрены лицевая поверхность с установленной решеткой для съемки тока и тыльная сторона, представляющая собой сплошной контакт. Во время явления диффузии возникает электрическое замыкание между двумя плоскостями и передается на торец.
Чтобы удалить замыкание, применяется оборудование для солнечных батарей, позволяющее сделать это с помощью плазмохимического, химического травления или механическим, лазерным путем. Часто используется метод плазмохимического воздействия. Травление выполняется одновременно для стопки сложенных вместе пластин кремния. Исход процесса зависит от длительности обработки, состава средства, размера квадратов материала, направления струй ионного потока и других факторов.
Нанесение антиотражающего покрытия
При помощи нанесения текстуры на поверхности элемента снижается отражение до 11%. Это обозначает, что десятая часть лучей попросту отражается от поверхности и не принимает участия в образовании электричества. С целью уменьшения таких потерь на лицевую сторону элемента наносят покрытие с глубоким проникновением световых импульсов, не отражающее их обратно. Ученые, принимая во внимание законы оптики, определяют состав и толщину слоя, поэтому производство и установка солнечных батарей с таким покрытием уменьшают отражение до 2%.
Контактная металлизация с лицевой стороны
Поверхность элемента предназначена для поглощения наибольшего количества излучения, именно этим требованием определяются размерные и технические характеристики наносимой металлической сетки. Выбирая дизайн лицевой стороны, инженеры решают две противоположные проблемы. Снижение оптических потерь происходит при более тонких линиях и расположении их на большом расстоянии одна от другой. Производство солнечной батареи с увеличенными размерами сетки приводит к тому, что часть зарядов не успевает достичь контакта и теряется.
Поэтому учеными стандартизировано значение расстояния и толщины линии для каждого металла. Слишком тонкие полоски открывают пространство на поверхности элемента для поглощения лучей, но не проводят сильный ток. Современные методы нанесения металлизации состоят в трафаретном печатании. В качестве материала наиболее оправдывает себя серебросодержащая паста. За счет ее применения КПД элемента поднимается на 15-17%.
Металлизация на тыльной стороне прибора
Нанесение металла на тыльную сторону устройства происходит по двум схемам, каждая из которых выполняет собственную работу. Сплошным тонким слоем по всей поверхности, кроме отдельных отверстий, напыляют алюминий, а отверстия заполняют серебросодержащей пастой, играющей контактную роль. Сплошной алюминиевый слой служит своеобразным зеркальным устройством с тыльной стороны для свободных зарядов, которые могут потеряться в оборванных кристаллических связях решетки. С таким покрытием на 2% больше по мощности работают солнечные батареи. Отзывы потребителей говорят, что такие элементы более долговечны и не так сильно зависят от пасмурной погоды.
Изготовление солнечных батарей своими руками
Источники питания от солнца не каждый может заказать и установить у себя дома, так как их стоимость на сегодняшний день достаточно велика. Поэтому многие мастера и умельцы осваивают производство солнечных батарей дома.
Приобрести комплекты фотоэлементов для самостоятельной сборки можно в интернете на различных сайтах. Стоимость их зависит от количества применяемых пластин и мощности. Например, небольшой мощности комплекты, от 63 до 76 Вт с 36 пластинами, стоят 2350-2560 руб. соответственно. Здесь же приобретают рабочие элементы, отбракованные с производственных линий по каким-либо причинам.
При выборе типа фотоэлектрического преобразователя принимают во внимание тот факт, что поликристаллические элементы более устойчивы к пасмурной погоде и работают при ней эффективнее монокристаллических, но имеют меньший срок службы. Монокристаллические обладают более высоким КПД в солнечную погоду, и прослужат они гораздо дольше.
Чтобы организовать производство солнечных батарей в домашних условиях, нужно подсчитать общую нагрузку всех приборов, которые будут питаться от будущего преобразователя, и определиться с мощностью устройства. Отсюда вытекает количество фотоэлементов, при этом учитывают угол наклона панели. Некоторые мастера предусматривают возможность изменения положения накопительной плоскости в зависимости от высоты солнцестояния, а зимой — от толщины выпавшего снега.
Для изготовления корпуса применяют различные материалы. Чаще всего ставят алюминиевые или нержавеющие уголки, используют фанеру, ДСП и др. Прозрачная часть выполняется из органического или обыкновенного стекла. В продаже есть фотоэлементы с уже припаянными проводниками, такие покупать предпочтительнее, так как упрощается задача сборки. Пластины не складывают одну на другую — нижние могут дать микротрещины. Припой и флюс наносятся предварительно. Паять элементы удобнее, расположив их сразу на рабочей стороне. В конце крайние пластины приваривают к шинам (более широким проводникам), после этого выводят «минус» и «плюс».
После проделанной работы тестируют панель и герметизируют. Зарубежные мастера для этого используют компаунды, но для наших умельцев они стоят довольно дорого. Самодельные преобразователи герметизируют силиконом, а тыльную сторону покрывают лаком на основе акрила.
В заключение следует сказать, что отзывы мастеров, которые сделали солнечные батареи своими руками, всегда положительные. Однажды затратив средства на изготовление и установку преобразователя, семья очень быстро их окупает и начинает экономить, используя бесплатную энергию.
Источник
Производство солнечных батарей
В условиях постоянного повышения цен на энергоресурсы, все больше внимания уделяется альтернативным источникам электроэнергии. Таким путем снижается зависимость от централизованных поставок, улучшается экологическая обстановка. Одним из направлений является производство солнечных батарей, которое к настоящему времени в целом обеспечивает растущие потребности населения.
Что такое солнечная батарея
Первые эксперименты в области солнечной энергетики начались в середине прошлого века. Ведущие индустриальные страны попытались использовать термальные станции для получения электрической энергии. Данная технология предполагала нагревание воды концентрированными солнечными лучами, после чего она превращалась в пар. Затем этот пар под давлением подавался на турбины генератора, заставлял их вращаться, в результате чего начинала вырабатываться электроэнергия.
В этих установках солнечная энергия неоднократно трансформировалась, поэтому их эффективность была на очень низком уровне. Постепенно, с развитием производства полупроводников, появились устройства, напрямую преобразующие солнечные лучи в электрический ток. Это стало возможно, благодаря фотоэлектрическому эффекту, открытому еще в 19-м веке. Но вплотную приблизиться к созданию настоящей солнечной батареи удалось только благодаря полупроводникам. Постепенно началось их массовое производство, в том числе и в РФ.
Наиболее эффективным полупроводником оказался кремний, применяющийся в большинстве современных солнечных панелей. Под действием солнечных лучей верхняя пластина нагревается и атомы кремния начинают испускать электроны, занимающие места дырок в нижней пластине. Поскольку электроны стремятся занять свое исходное положение, они начинают двигаться снизу в сторону верхней пластины. Но, на свое место они сразу не попадают, а по соединительным проводникам поступают в аккумулятор и отдают часть энергии на его зарядку. После этого они занимают свое место и весь процесс начинается вновь. Он прекращается с наступлением темноты и значительно снижается в пасмурную погоду.
Наибольший эффект получается от фотоэлементов, созданных на основе монокристаллического кремния, в том числе и российского производства. В таких кристаллах минимальное количество граней, что обеспечивает прямолинейное движение электронов.
Как устроена солнечная панель
В конструкцию панели входит определенное количество элементов, являющихся фотоэлектрическими преобразователями. С их помощью солнечная энергия превращается непосредственно в электрическую. Основным материалом для изготовления служит монокристаллический или поликристаллический кремний, выращенный искусственным путем. Они производятся по разным технологиям и отличаются коэффициентом полезного действия.
Эффективность фотоэлементов определяется их полезной мощностью, которая зависит от напряжения и выходного тока. На состояние этих параметров оказывает влияние интенсивность солнечного излучения, попадающего на поверхность панели. Значение выходного тока зависит еще и от размеров фотоэлементов: чем ярче свет, тем сильнее генерация тока. При пасмурной погоде происходит резкое снижение зарядного тока и отдаваемой мощности.
Соединение фотоэлементов между собой осуществляется с помощью последовательной и параллельной схемы. В первом случае это способствует увеличению выходного напряжения, а во втором – выходного тока. Обычно используется комбинированный способ, позволяющий улучшить оба показателя и сделать их наиболее оптимальными. Данное соединение обеспечивает надежную работу всей панели, даже, если какой-то из элементов вышел из строя.
При попадании одного из фотоэлементов в тень, он на этот период сам становится потребителем тока из-за разрядки аккумулятора. В подобной ситуации возможен его перегрев и выход из строя. Чтобы этого не произошло, выполняется шунтирование диодами по 4 штуки на каждый элемент. При частичном попадании панели в тень, ток начинает проходить через диоды, что и спасает затененные места от перегревания.
Весь набор фотоэлементов размещается в общем корпусе, соединяющем и скрепляющем всю конструкцию. Каркас изготавливается из алюминиевого профиля, а для защиты используется специальное закаленное стекло, покрытое отражающей пленкой. Шунтирующие диоды размещаются в распределительной коробке.
Солнечная батарея не может отдавать выработанный ток непосредственно потребителю. Для этой цели используется специальное оборудование – аккумуляторы, контроллеры, инверторы, соединительные провода и другие детали.
Разновидности кремниевых установок
Прежде чем рассматривать изготовление солнечных батарей, необходимо изучить материалы, используемые в фотоэлектрическом слое элементов. Это связано с тем, что каждый материал требует собственной технологии производства и в конечном итоге влияет на характеристики и стоимость конкретного изделия.
В большинстве солнечных панелей применяются кремниевые кристаллы. Разрабатываются батареи с другими материалами, однако, несмотря на их высокий КПД, они не нашли широкого применения из-за своей высокой стоимости. В настоящее время производители солнечных батарей не изготовляют таких устройств, поскольку это неэффективно и нецелесообразно.
Элементы на основе кремния обладают повышенной чувствительностью к нагреву. Для замеров электрической генерации используется базовая температура в 25 градусов. С каждым повышением ее на 1 градус происходит снижение эффективности панелей до 0,5%. Основой кремния служат размолотые кристаллы кварцевого песка, превращенного в порошок.
В зависимости от способа производства, все панели разделяются на следующие виды.
Монокристаллические
Отличаются темно-синим цветом, равномерно распределенным по всей поверхности. Изготавливаются из наиболее чистого кремния, что позволяет получить лучший КПД, хотя и за высокую цену. Такая повышенная стоимость получается за счет сложности технологических процессов, ориентирующих кристаллы в одном направлении. В этом случае для максимального КПД требуется строго перпендикулярное падение лучей солнца на поверхность фотоэлементов.
В связи с этим, монокристаллическим панелям необходимо дополнительное оборудование, обеспечивающее их вращение и приведение в нужное положение в течение дня. Среди них широким спросом пользуются российские солнечные панели.
Поликристаллические
Обладают неравномерным синим окрасом различной интенсивности по причине хаотичной ориентации кристаллов. В фотоэлементах используется кремний, не такой чистый как в монокристаллическом варианте, однако, из-за различной направленности кристаллов обеспечиваются хорошие показатели КПД даже в пасмурную погоду.
Более низкие требования и неоднородная структура кремния существенно удешевляет его производство, что влияет и на конечную стоимость таких панелей. Им не требуется постоянная ориентация относительно солнца, поэтому они чаще всего устанавливаются на крышах частных домов и промышленных объектов.
Панели с аморфным кремнием
Технология изготовления совсем другая по сравнению с предыдущими вариантами. В данном случае применяется не чистый кремний, а гидрид кремния, разогреваемый до состояния пара и осаждаемый на специальную подложку. У таких панелей сравнительно низкий КПД – всего 8-9%, но и цена у них небольшая.
Сегодня показатель КПД удалось поднять до 12%, но таких изделий на рынке еще очень мало, и они дорогие. На эффективность аморфных панелей не оказывает влияния даже значительное повышение температуры.
Изготовление фотоэлементов
На всех специализированных предприятиях производство солнечных батарей начинается с изготовления фотоэлементов. Для каждого типа кристаллов существует собственная технология производства.
Монокристаллический кремний получается в результате термической обработки исходного сырья. На выходе получается слиток материала в виде прямоугольного бруска с однородной кристаллической решеткой и высокой степенью чистоты. Углы бруска обрезаются, а сам он разрезается на тонкие пластинки. В результате получаются квадраты с закругленными углами, которые используются в качестве фотоэлементов.
Производство поликристаллических элементов более простое, поскольку не требуется выращивание кристаллов с однородной структурой. Здесь также используется термическая обработка сырья. После разрезания брусков получаются тонкие пластинки с видимой разнородной структурой и хаотичным расположением частичек. Свет, попадая на них, отражается на соседние частички, в результате чего, общая отражающая способность снижается примерно на 25%.
Для улучшения поглощающих свойств поверхность пластинок последовательно обрабатывается щелочами и кислотами. Данную технологию применяет практически каждый завод по производству солнечных батарей.
Аморфные панели изготавливаются методом напыления гидрида кремния на жесткую или гибкую поверхность. С целью придания определенных свойств, в распыленный материал добавляются различные наночастицы и микроэлементы. Готовые пластины покрываются специальным материалом, снижающим отражающие свойства. В противном случае, примерно 10% излучения отразится назад и выпадет из процесса генерации электрического тока. За счет покрытия, свет проникает максимально глубоко и не отражается обратно.
Производство солнечных панелей
Для сбора заряда на лицевую сторону пластины наносится металлизированная сетка с оптимальной толщиной линий и их расположением относительно друг друга. Как правило, используется специальная паста, содержащая серебро. Высокая проводимость серебра позволяет увеличить КПД фотоэлементов на 15%. Далее, из полученных фотоэлементов собираются солнечные батареи в общую конструкцию.
Все производство готовых изделий можно условно разделить на несколько этапов:
- В первую очередь выполняется тестирование, замеряют электрические характеристики. Для этот используют ксеноновые лампы, способные производить мощные вспышки. По итогам испытаний элементы сортируются и переходят на следующий этап.
- Из готовых элементов выполняется формирование секций, укладываемых на стеклянную подложку. Для укладки используются специальные вакуумные захваты, чтобы исключить любое воздействие на пластины. Один блок состоит из 4-6 секций, а каждая секция включает в себя 9-10 фотоэлектрических пластин. Соединение блоков между собой осуществляется методом пайки, поэтому каждый собранный таким образом компонент, служит дольше.
- Далее выполняется ламинирование соединенных блоков этиленвинилацетатной пленкой, после чего на поверхность наносится защитное покрытие. Все операции производятся на оборудовании с ЧПУ, а параметры ламинирования контролируются в течение всего процесса.
- На последнем этапе готовая конструкция помещается в рамку из алюминиевого профиля. Все соединения выполняются клеем-герметиком. По окончании сборки готовые солнечные панели вновь тестируются на соответствие выдаваемых параметров нормативным показателям. Такие меры позволяют снизить процент брака и увеличить срок службы солнечных батарей.
Производители солнечных батарей
Солнечные батареи уже давно перешли из стадии экспериментов в широкое промышленное производство. Хорошую и качественную продукцию выпускают отечественные заводы. Вниманию потребителей предлагаются следующие российские производители солнечных панелей.
Зеленоградская компания ЗАО «Телеком-СТВ» (Москва и Подмосковье)
Их продукция примерно на 30% дешевле зарубежных аналогов. Панель, мощностью 100 Вт, стоит примерно 6000 рублей, при заявленном КПД 20%. Предприятие специализируется на выпуске монокристаллических панелей.
Рязанский завод металлокерамических приборов (ЗМКП)
Один из популярных в России завод. Основной упор также делается на монокристаллы. Налажен выпуск дополнительного оборудования – инверторов, контроллеров и других компонентов. Производятся панели небольшой мощности для зарядки мобильных устройств.
Краснодарский завод «Сатурн»
В технологиях применяются металлические, струнные, сетчатые и другие типы каркасов. Продукция компании «Сатурн» отличается высокими эксплуатационными характеристиками не только в обычных условиях, но и в космосе. Предприятие «Сатурн» выполняет полный цикл работ по проектированию, изготовлению и испытанию солнечных панелей, считается одним из лучших предприятий.
НПП «Квант»
Специализируются на выпуске солнечных панелей с двухсторонней чувствительностью. Кроме традиционных материалов, используют арсенид галлия. Самой популярной моделью является Квант КСМ-180П, мощностью 185 Вт, с напряжением 36 В. Срок эксплуатации, заявленный изготовителем, составляет 40 лет, ориентировочная стоимость – 20000 рублей.
Солнечные батареи для дома
Принцип работы солнечной батареи
Монокристаллические и поликристаллические солнечные батареи
Источник