Свинцовый аккумулятор токообразующая реакция

Физико-химические процессы в свинцово-кислотном аккумуляторе

Химический источник тока создается на основе определенной электрохимической системы, которой называется совокупность реагентов (окислителя и восстановителя) и электролита. Восстановитель электрохимической системы в процессе рабочей реакции (называемой также токообразующей) отдает электроны и окисляется (отрицательный электрод), а окислитель восстанавливается (положительный электрод). Электролитом служит, как правило, жидкостное химическое соединение, обладающее хорошей ионной проводимостью и крайне малой электронной.

Условная запись электрохимической системы:

(-) Восстановитель | Электролит | Окислитель (+).

В свинцово-кислотных аккумуляторах восстановителем служит губчатый свинец РЬ, а окислителем — двуокись свинца РЬ02. Электролит — водный раствор серной кислоты H2SO4 с массовой концентрацией 28. 40%. Таким образом, условная запись рассматриваемой электрохимической системы

Физические процессы, происходящие в аккумуляторе, связаны со свойством электролитического растворения металлов, которое заключается в переходе положительно заряженных ионов металла в раствор. Причем легкоокисляющиеся металлы (свинец) обладают этим свойством в большей степени, чем трудноокисляющиеся. При погружении электрода, на котором образовался свинец, в раствор электролита от свинца начнут отщепляться положительно заряженные ионы свинца и переходить в раствор, при этом электрод будет заряжаться отрицательно. По мере протекания процесса

возрастает разность потенциалов раствора и электрода, следовательно, возрастает и осмотическое давление положительных ионов раствора. Вследствие этого переход ионов свинца в раствор не может продолжаться долго и при какой-то определенной разности потенциалов электрода и раствора наступит равновесие между силой электролитической упругости растворения свинца, с одной стороны, и силами электростатического поля и осмотического давления — с другой. В результате растворение свинца прекратится.

При погружении положительного электрода в раствор серной кислоты происходит то же явление, но результат получается иной. Двуокись свинца положительного электрода в ограниченном количестве переходит в раствор, где при соединении с водой ионизируется на четырехвалентные ионы свинца РЬ4+ и одновалентные ионы гидро-окисла ОН” Четырехвалентные ионы свинца, осаждаясь на электро-де, создают положительный потенциал относительно раствора.

Читайте также:  Аккумулятор хонор 30 про плюс

Химические процессы в свинцово-кислотном аккумуляторе описываются теорией «двойной сульфатации», разработанной еще в 1883 г. Дж. Гладстоном и А. Трайбом.

При указанных концентрациях серная кислота диссоцирует в воде практически только на ионы Н+ и HSO4. Поэтому реакции на электродах описываются следующими уравнениями:

(+) РЬ02 + ЗН+ + HSO4 + 2е PbS04 + 2Н20;

(-)Pb+HSC>4 PbS04 + Н+ + 2е.

Общая токообразующая реакция в аккумуляторе:

РЬ02 + РЬ + 2 H2S04 2PbS04 + 2Н20.

Таким образом, при разряде аккумулятора расходуется серная кислота, образуется вода, а на обоих электродах — сульфат свинца. При заряде процессы протекают в обратном направлении.

Большое значение для работы электродов имеет их пористая структура, обеспечивающая доступ электролита в глубину электрода. Средний диаметр пор положительного электрода равен 1. 2 мкм, отрицательного — 10 мкм. В ходе разряда пористость сильно умень-шается, так как удельный объем сульфата свинца больше удельных объемов свинца и двуокиси свинца.

Для свинцово-кислотных аккумуляторов характерно сильное разбавление электролита во время разряда из-за потребления серной кислоты и образования воды. Поэтому измерение плотности или концентрации электролита служит удобным и точным средством определения степени зараженности аккумулятора.

Помимо основных рабочих реакций, в аккумуляторах протекают также и побочные реакции, уменьшающие КПД рабочих процессов и, как правило, отрицательно сказывающиеся на работоспособности батареи. Одной из основных побочных реакций является электролиз воды и связанное с ним газовыделение кислорода и водорода. Выделение газов на электродах происходит главным образом при заряде, а также в процессе разряда и хранения батареи; при этом выделение кислорода происходит на положительном электроде, а водорода — на отрицательном. Этот процесс определяется разностью между потенциалом электрода и напряжением начала выделения газа (так называемое «перенапряжение газа»). Чем больше «перенапряжение», тем больше интенсивность газовыделения, и наоборот. На напряжение начала газовыделения значительное влияние оказывают примеси, содержащиеся в активных материалах, а также в конструкционных материалах электродов. Примеси, понижающие напряжение начала газовыделения, увеличивают его интенсивность, что приводит к быстрому снижению уровня электролита в аккумуляторе из-за «выкипания» и требует частого долива дистиллированной воды в процессе эксплуатации.

Источник

Свинцовый аккумулятор токообразующая реакция

Библиографическая ссылка на статью:
Кочуров А.А., Гумелёв В.Ю. Анализ существующих механизмов токообразующих процессов в свинцовом кислотном аккумуляторе // Исследования в области естественных наук. 2013. № 4 [Электронный ресурс]. URL: https://science.snauka.ru/2013/04/4576 (дата обращения: 12.04.2021).

Согласно существующим на настоящий момент представлениям в технической и научной литературе описываются несколько механизмов работы свинцового аккумулятора [1 – 5], при этом общий принцип его работы трактуется всеми авторами одинаково и базируется на положениях теории «двойной сульфатации».

При этом активными веществами заряженного аккумулятора, участвующими в токообразующих процессах, являются диоксид свинца РbО2 на положительном электроде, губчатый свинец Рb на отрицательном электроде и электролит − водный раствор серной кислоты H2SO4. Серная кислота является сильным электролитом. Она частично диссоциирована на положительные и отрицательные ионы: Н + и SO4 2− .

На отрицательном электроде свинец, частично растворяясь в электролите, выделяет в раствор положительные ионы Рb 2+ . При этом на электроде остаются избыточные электроны, которые сообщают ему отрицательный заряд и движутся по внешнему участку замкнутой электрической цепи в направлении к положительному электроду.

Ионы двухвалентного свинца вступают в реакцию с сульфатными ионами серной кислоты, в результате чего образуется сернокислый свинец, который, обладая очень малой растворимостью в сернокислотном электролите, осаждается на поверхности отрицательного электрода. Таким образом, в процессе разряда активная масса отрицательного электрода превращается из губчатого свинца в сернокислый свинец.

На положительном электроде потенциал образуется в результате перехода четырехвалентных ионов свинца Рb 4+ из электролита на поверхность электрода. Диоксид свинца РbО2 растворяется в электролите в очень малой степени, образует с водой химическое соединение Pb(OH)4 − гидрат диоксида свинца, молекула которого в электролите распадается на четырехзарядный ион свинца Рb 4+ и четыре однозарядных иона гидроксила 4ОН − .

Так как диоксид свинца обладает в растворе серной кислоты высоким положительным потенциалом, то он принимается в качестве положительной активной массы свинцовых аккумуляторов. Ионы четырехвалентного свинца Рb 4+ переходят на поверхность электрода, сообщая ему положительный заряд, а отрицательные ионы гидроксила 4ОН −
остаются в электролите. Таким образом, на границе между электродом и электролитом образуется двойной электрический слой. В этом случае электрод будет заряжен положительно, а прилегающий к нему слой электролита отрицательно.

Концентрация ионов четырехвалентного свинца также зависит от плотности электролита. Чем выше плотность электролита, тем выше потенциал электрода. При обычных плотностях электролита потенциал положительного электрода в заряженном состоянии равен примерно 1,68 В.

Если замкнуть внешнюю цепь, то под действием ЭДС аккумулятора в ней потечет электрический ток по направлению от положительного электрода к отрицательному. Электроны, накопившиеся на отрицательном электроде, будут перетекать по внешней цепи в противоположном направлении [2].

Каждые два электрона, поступившие с отрицательного электрода, будут восстанавливать на положительном электроде положительный ион четырехвалентного свинца до двухвалентного иона свинца Рb 2+ , который переходит в электролит и соединяется с ионом SO4 2− , образуя молекулу сульфата свинца. Сульфат свинца, обладая малой растворимостью, отлагается на поверхности положительного электрода в виде мелких кристаллов. Наряду с этим процессом происходит взаимодействие гидроксильных ионов (4ОН − ), образовавшихся в результате распада гидроксила свинца Рb (ОН)4 на ионы, с четырьмя ионами водорода (4Н + ) − продуктами диссоциации серной кислоты, в результате чего образуются четыре молекулы воды. Следовательно, на каждые две израсходованные молекулы серной кислоты и две молекулы воды образуются вновь четыре молекулы воды. Таким образом, плотность электролита в процессе разряда аккумулятора будет постоянно понижаться.

На отрицательном электроде, по мере перехода электронов во внешнюю цепь, происходит окисление свинца до двухвалентных ионов Рb 2+ . Эти ионы свинца будут переходить в раствор серной кислоты − электролит − и взаимодействовать с ионами SО4 2− , образуя также сульфат свинца, который будет осаждаться на поверхности отрицательного электрода. Процесс разряда свинцового аккумулятора записывается следующим уравнением:

Схематическое изображение электродных процессов, протекающих при разряде свинцового аккумулятора, представлено на рисунке 1 [2].

Рисунок 1 − Схема электрохимических процессов при разряде

Как видно из рассмотренных электродных процессов, при разряде аккумулятора в сульфат свинца переходят активные массы как положительного, так и отрицательного электродов, то есть происходит «двойная сульфатация».

При заряде аккумулятора необходимо к его электродам присоединить источник тока, напряжение которого превышает ЭДС аккумулятора. При этом положительный полюс подключается к положительным электродам, а отрицательный полюс − к отрицательным электродам. Ток будет протекать через аккумулятор в направлении, обратном току разряда. Электроны будут перетекать с положительных на отрицательные электроды. Изменится также направление движения ионов в электролите. Ионы свинца Рb 2+ будут переходить из электролита на электроды, а четырехвалентные ионы свинца Рb 4+ − в электролит.

Схематическое изображение электродных процессов, протекающих при заряде свинцового аккумулятора, представлено на рисунке 2 [2].


Рисунок 2 − Схема электрохимических процессов при заряде

Образовавшийся на положительном и отрицательном электродах в процессе разряда сульфат свинца переходит при заряде в электролит и распадается на ионы Рb 2+ и SO4 2─ . Вода же диссоциирует частично на ионы водорода Н + и ионы гидроксила ОН ─ .

При прохождении электрического тока ионы свинца Рb 2+ на положительном электроде будут окисляться до четырехвалентного свинца Рb 4+ , отдавая два электрона во внешнюю цепь. В свою очередь, ионы Рb 4+ будут соединяться с четырьмя гидроксильными ионами, полученными при диссоциации воды, образуя молекулу диоксида свинца РbО2. В результате взаимодействия ионов водорода Н + с ионами SO4 2─ образуется молекула серной кислоты H2SO4.

На отрицательном электроде ионы свинца Рb 2+ получают из внешней цепи по два электрона и восстанавливаются до губчатого свинца, а ионы водорода Н + , соединяясь с ионами сульфата SO4 2─ , образуют молекулу серной кислоты.

Согласно теории «двойной сульфатации» [4] процессы заряда в свинцовом аккумуляторе протекают по уравнению

Таким образом, при заряде свинцового аккумулятора на обоих электродах происходит образование исходных веществ: на положительном электроде образуется диоксид свинца, на отрицательном − губчатый свинец, а вода заменяется на серную кислоту, в результате чего повышается концентрация электролита.

При этом по существующим представлениям о протекании электрохимических процессов в аккумуляторе, повышение концентрации серной кислоты происходит больше у положительных электродов, чем у отрицательных [2]. Это объясняется тем, что ионы SO4 2─ движутся в данном случае от отрицательного к положительному электроду. Исходя из скоростей движения ионов Н + и SO4 2─ в электролите, установлено, что прирост концентрации серной кислоты у положительных электродов приблизительно в 1,4 раза выше, чем у отрицательных электродов. При разряде картина будет обратной. Поэтому, учитывая это обстоятельство, на практике принимают меры к улучшению циркуляции электролита у положительных электродов.
Так, например, в стартерных аккумуляторных батареях используют сепараторы, имеющие на стороне, обращенной к поверхности положительного электрода, специальные ребра для увеличения объема электролита у этого электрода.

Плотность электролита при заряде аккумулятора повышается до тех пор, пока весь сульфат свинца не преобразуется в активные вещества. Прекращение повышения плотности электролита при заряде служит признаком окончания заряда аккумулятора. При дальнейшем заряде происходит разложение воды нa водород и кислород, которые, выделяясь
из электролита в виде газовых
пузырьков, вызывают его кипение.

Несколько отличается от описанного выше механизм работы свинцового аккумулятора согласно [3].

Основное отличие предложенного механизма работы свинцового аккумулятора заключается в механизме образования двойного электрического слоя на поверхности положительного электрода аккумулятора и связанных с этим особенностей протекания токообразующих реакций в аккумуляторе.

Так, предполагается, что в результате взаимодействия молекул диоксида свинца с электролитом некоторое количество молекул диоксида свинца ионизируется. При этом двухзарядные отрицательные ионы кислорода (О 2− ) переходят в электролит, а четырехзарядные положительные ионы свинца (Рb 4+ ) остаются на поверхности положительного электрода. Положительные ионы свинца, остающиеся на поверхности электрода, притягивают к себе отрицательные ионы кислорода и не дают им возможности распространяться вглубь раствора. Таким образом, на границе положительного электрода с раствором электролита возникает двойной электрический слой: положительные ионы свинца на поверхности электрода и отрицательные ионы кислорода на границе соприкосновения электролита с поверхностью электрода. При этом общий токообразующий процесс в аккумуляторе протекает согласно уравнению [4] теории «двойной сульфатации»

Таким образом, в технической литературе [2, 3, 4, 6, 7] в настоящее время имеет место различное толкование механизма токообразующих процессов, протекающих на электродах свинцового аккумулятора, хотя все они и базируются на положениях теории «двойной сульфатации». При этом в работе [8] делается вывод о том, что химическая реакция в обратимо действующем свинцовом аккумуляторе протекает в соответствии с уравнением (3 ), «… однако этот вывод совершенно не дает оснований утверждать, что и
реальный процесс обычного разряда
свинцового аккумулятора
тоже сопровождается
химической реакцией (3)».

Стоит отметить, что в настоящее время не существует прямых физических измерений атомарного состава элементов электролита и активной массы электродов свинцовых аккумуляторов непосредственно участвующих в токообразующих реакциях. Именно эти измерения могли бы служить достоверным доказательством основных положений теории «двойной сульфатации».

Вместе с тем из изложенного материала не вполне понятно, каким образом при протекании токообразующих сопряженных электродных реакций при разряде аккумулятора по уравнению (1) на отрицательном и положительном электродах выделяется различное количество участвующих в реакции активных веществ, обладающих разными по величине зарядами.

Кроме того, в известных механизмах [2 – 4, 9] в первичной токообразующей электродной реакции на положительном электроде в одном электрическом поле одновременно участвуют как положительно, так и отрицательно заряженные ионы электролита. Это не согласуется с положениями о протекании тока в электролитах, в соответствии с которыми заряды ионов, образующих электрический ток в электролите под действием приложенного к нему электрического поля, должны быть равны по величине, но противоположны по знаку, а электродные реакции должны быть сопряженными [9].

Обозначенные противоречия требуют дальнейшего изучения и обоснования.

Библиографический список

  1. Дасоян, M.А. Производство электрических аккумуляторов [Текст]: уч. пособие / М.А. Дасоян, В.В. Новодережкин, Ф.Ф. Томашевский; под ред.М.А. Дасояна. − М.: Высшая школа, 1965. – 468 с.
  2. Болотовский, В.И. Эксплуатация, обслуживание и ремонт свинцовых аккумуляторов [Текст] / В.И. Болотовский, З.И. Вайсгант. − Л.: Энергоатомиздат. Ленингр. отд-ние, 1988. − 208 с.
  3. Белогуров, И.Г. Стартерные кислотные аккумуляторы [Текст] / И.Г. Белогуров. − М.: Воениздат, 1960. −168 с.
  4. Дасоян, М.А. Современная теория свинцового аккумулятора [Текст] / М.А. Дасоян, И.А. Агуф. − Л.: «Энергия», 1975. − 312 с.
  5. Долецалек, Ф. Теория свинцового аккумулятора [Текст] / Ф. Долецалек. – М. – Л.: ОНТИ «Энергоиздат», 1934. – 155 с.
  6. Акимов, С.В. Электрооборудование автомобилей [Текст]: учебник для вузов / С.В. Акимов, Ю.П. Чижков. −М.: ЗАО КЖИ «За рулем», 2003. − 384 с.
  7. Ютт, В. Е. Электрооборудование автомобилей [Текст] / В. Е. Ютт. – М. : Горячая линия – Телеком, 2009. – 440 с.
  8. Лоренц, А.К. К вопросу о термодинамическом обосновании теории двойной сульфатации [Текст]: сб. науч.-исслед. раб. по химич. источн. тока / А.К. Лоренц. − М. − Л.: ЦАЛ, 1939. − Вып. 4. − С. 35−54.
  9. Багоцкий, В.С. Химические источники тока [Текст] / В.С. Багоцкий, А.М. Скундин. − М.: Энергоиздат, 1981. − 360 c.

Связь с автором (комментарии/рецензии к статье)

Оставить комментарий

Вы должны авторизоваться, чтобы оставить комментарий.

Источник

Оцените статью