Спектры поглощения солнечных батарей

Зависимость характеристик солнечных батарей от освещенности. Эффективность преобразования солнечного света в электрический ток , страница 4

4. Спектральная характеристика фотоэлемента.

Спектральная характеристика фотоэлемента это зависимость тока короткого замыкания от длины волны падающего света. Для кремниевого фотоэлемента максимум спектральной характеристики почти соответствует максимуму спектрального распределения энергии солнечного света (рис. 5). Именно поэтому кремниевые фотоэлементы широко используются для создания солнечных батарей.

Рис. 5. Спектр Солнца (Т ≈ 5800 К), спектр света лампы (Т ≈ 2000 K) и спектральная чувствительность кремниевой солнечной ячейки.

Спектр лампы и Солнца отличаются тем, что у Солнца больше коротковолнового излучения (с большей энергией), а у лампы больше длинноволновая составляющая. Таким образом, лампа сильнее нагревает фотоэлемент, поэтому ее свет дает меньший ток короткого замыкания и, соответственно, меньший КПД.

Если энергия кванта света меньше ширины запрещенной зоны, то фотоэффекта не будет вовсе, поэтому существует минимальная энергия (или максимальная длина волны), при которой эффект ещё наблюдается. Для кремния Si ширина запрещенной зоны Eg=1,1 эВ, что соответствует длине волны λmax=1,3 мкм и частоте ν=2,5·10 14 Гц.

Читайте также:  Светодиодные светильники с выносной солнечной батареей

С повышением температуры фотоэлемента происходит: а) понижение потенциального барьера (уменьшатся ширина запрещенной зоны) и б) увеличивается количество основных носителей, имеющих бо́льшую энергию, т.е. происходит перераспределение носителей по уровням. Понижение барьера приводит к понижению напряжения холостого хода (а также тока короткого замыкания) – уменьшается площадь под ВАХ – уменьшается КПД фотоэлемента (рис. 6).

Рис. 6. Вольт-амперная характеристика солнечной батареи: a) с охлаждающим вентилятором, b) без охлаждающего вентилятора, c) при экранировке стеклянным колпаком.

Порядок выполнения работы

1. Определение интенсивности света на разных расстояниях от лампы.

Установить датчик интенсивности (ДИ) в держатель. Поместить держатель на линейку на расстоянии 1 м от лампы. Снять с разъемов датчика заглушки. Подключить разъемы датчика к мультиметру — к разъемам «com» и «VΩHz». Перевести мультиметр в режим измерения напряжения – повернуть ручку предела шкалы на отметку «200 mV».

Включить лампу и мультиметр. Изменяя расстояние (r) от датчика до лампы от 1 м до 50 см с шагом 5 см, измерить интенсивность света (J), т.е. снять показания вольтметра в соответствующих шагу положениях (UJ), а затем поделить их на чувствительность фотодетектора (0,16 мВ/мВт) и площадь солнечной батареи (50 см 2 ). Данные занести в таблицу 1. Выключить лампу и мультиметр. Построить график J от r, где r меняется от 5 до 100 см. РАССТОЯНИЕ НЕ ДОЛЖНО БЫТЬ МЕНЬШЕ 50 см! Для расстояний меньше 50 см интенсивность находят экстраполяцией графика J от r.

Источник

Солнечные элементы. Принципы работы солнечных батарей

Основные принципы работы солнечных батарей

Рис.1. Конструкция солнечного элемента

Простейшая конструкция солнечного элемента (СЭ) – прибора для преобразования энергии солнечного излучения – на основе монокристаллического кремния показана на рис.1. На малой глубине от поверхности кремниевой пластины p-типа сформирован p-n-переход с тонким металлическим контактом. На тыльную сторону пластины нанесен сплошной металлический контакт.

Когда СЭ освещается, поглощенные фотоны генерируют неравновесные электрон-дырочные пары. Электроны, генерируемые в p-слое вблизи p-n-перехода, подходят к p-n-переходу и существующим в нем электрическим полем выносятся в n-область.

Аналогично и избыточные дырки, созданные в n-слое, частично переносятся в p-слой (рис.2а). В результате n-слой приобретает дополнительный отрицательный заряд, а p-слой – положительный. Снижается первоначальная контактная разность потенциалов между p- и n-слоями полупроводника, и во внешней цепи появляется напряжение (рис.2б).

Отрицательному полюсу источника тока соответствует n-слой, а p-слой – положительному.

Рис.2. Зонная модель разомкнутого p-n-перехода:
а) — в начальный момент освещения;
б) — изменение зонной модели под действием
постоянного освещения и возникновение фотоЭДС

Величина установившейся фотоЭДС при освещении перехода излучением постоянной интенсивности описывается уравнением вольт-амперной характеристики (ВАХ) (рис.3):

где Is– ток насыщения, а Iph – фототок.

ВАХ поясняет эквивалентная схема фотоэлемента (рис.4), включающая источник тока

где S – площадь фотоэлемента, а коэффициент собирания Q – безразмерный множитель (

Материалы для солнечных элементов

Для эффективной работы солнечных элементов необходимо соблюдение ряда условий:

  • оптический коэффициент поглощения (a) активного слоя полупроводника должен быть достаточно большим, чтобы обеспечить поглощение существенной части энергии солнечного света в пределах толщины слоя;
  • генерируемые при освещении электроны и дырки должны эффективно собираться на контактных электродах с обеих сторон активного слоя;
  • солнечный элемент должен обладать значительной высотой барьера в полупроводниковом переходе;
  • полное сопротивление, включенное последовательно с солнечным элементом (исключая сопротивление нагрузки), должно быть малым для того, чтобы уменьшить потери мощности (джоулево тепло) в процессе работы;
  • структура тонкой пленки должна быть однородной по всей активной области солнечного элемента, чтобы исключить закорачивание и влияние шунтирующих сопротивлений на характеристики элемента.

Производство структур на основе монокристаллического кремния, удовлетворяющих данным требованиям, – процесс технологически сложный и дорогостоящий. Поэтому внимание было обращено на такие материалы, как сплавы на основе аморфного кремния (a-Si:H), арсенид галлия и поликристаллические полупроводники.

Аморфный кремний выступил в качестве более дешевой альтернативы монокристаллическому. Первые СЭ на его основе были созданы в 1975 году. Оптическое поглощение аморфного кремния в 20 раз выше, чем кристаллического. Поэтому для существенного поглощения видимого света достаточно пленки а-Si:Н толщиной 0,5–1,0 мкм вместо дорогостоящих кремниевых 300-мкм подложек. Кроме того, благодаря существующим технологиям получения тонких пленок аморфного кремния большой площади не требуется операции резки, шлифовки и полировки, необходимых для СЭ на основе монокристаллического кремния. По сравнению с поликристаллическими кремниевыми элементами изделия на основе a-Si:Н производят при более низких температурах (300°С): можно использовать дешевые стеклянные подложки, что сократит расход кремния в 20 раз.

Пока максимальный КПД экспериментальных элементов на основе а-Si:Н – 12% – несколько ниже КПД кристаллических кремниевых СЭ (

15%). Однако не исключено, что с развитием технологии КПД элементов на основе а-Si:Н достигнет теоретического потолка – 16 %.

Наиболее простые конструкции СЭ из а-Si:Н были созданы на основе структуры металл – полупроводник (диод Шотки) (рис. 6). Несмотря на видимую простоту, их реализация достаточно проблематична – металлический электрод должен быть прозрачным и равномерным по толщине, а все состояния на границе металл/а-Si:Н – стабильными во времени. чаще всего солнечные элементы на основе а-Si:Н формируют на ленте из нержавеющей стали или на стеклянных подложках, покрытых проводящим слоем.

Рис.5. Конструкция фотоэлемента с барьером Шотки

При использовании стеклянных подложек на них наносят прозрачную для света проводящую оксидную пленку (ТСО) из SnO2, In2O3 или SnO2+In2O3 (ITO), что позволяет освещать элемент через стекло. Поскольку у нелегированного слоя электронная проводимость выражена слабо, барьер Шотки создается за счет осаждения металлических пленок с высокой работой выхода (Pt, Rh, Pd), которая обуславливает образование области положительного объемного заряда (обедненного слоя) в а-Si:Н.

При нанесении аморфного кремния на металлическую подложку образуется нежелательный потенциальный барьер а-Si:Н/металлическая подложка, высоту которого необходимо уменьшать. Для этого используют подложки из металлов с малой работой выхода (Mo, Ni, Nb). Перед нанесением аморфного кремния желательно осадить на металлической подложке тонкий слой (10–30 нм) а-Si:Н, легированный фосфором. Не рекомендуется использовать в качестве материалов электродов легко диффундирующие в аморфный кремний металлы (например, Au и Al), а также Cu и Ag, поскольку а-Si:Н обладает плохой адгезией к ним. Отметим, что Uxx солнечных элементов с барьером Шотки на основе а-Si:Н обычно не превышает 0,6 В.

Более высокой эффективностью обладают СЭ на основе аморфного кремния с p-i-n-структурой (рис.6). В этом “заслуга” широкой нелегированной i-области a-Si:H, поглощающей существенную долю света. Но возникает проблема – диффузионная длина дырок в a-Si:H очень мала (

100 нм), поэтому в солнечных элементах на основе a-Si:H носители заряда достигают электродов в основном только благодаря внутреннему электрическому полю, т.е. за счет дрейфа носителей заряда. В СЭ на основе кристаллических полупроводников носители заряда, имея большую диффузионную длину (100 – 200 мкм), достигают электродов и в отсутствие электрического поля. Поскольку в простом p-n-переходе в a-Si:H область сильного электрического поля очень узка и диффузионная длина носителей заряда мала, в большей части СЭ не происходит эффективного разделения носителей заряда, генерируемых при поглощении света.

Следовательно, для получения эффективных СЭ на основе p-i-n-сруктуры аморфного гидрогенизированного кремния необходимо добиться во всей i-области однородного мощного внутреннего электрического поля, достаточного для достижения длины дрейфа носителей, соизмеримого с размерами области поглощения (см. рис.6).

Рис.6. Энергетическая зонная диаграмма p-i-n-структуры (а)
и расчетное распределение электрического поля (б)

Данная задача решается, если при изготовлении p-i-n-структуры первым формировать p-слой (рис.7). Для его создания необходимо небольшое количество бора (

Источник

Ультрафиолетовые солнечные панели 2

Солнечные панели есть двух основных типов: моно- и поликристаллические. Монокристаллические работают чуть лучше поликристаллических за счёт большего КПД, но есть продавцы панелей, которые говорят, что у них «специальные» солнечные панели, разработанные для северных широт и таким панелям не нужно прямое солнечное излучение, т.к. они работают от ультрафиолета (УФ). Работают даже в пасмурную погоду, когда небо свинцового цвета, якобы потому что УФ не задерживается облаками, а свободно проходит сквозь них.

Давайте разбираться так-ли это на самом деле и насколько эффективно солнечные панели работают от ультрафиолетового излучения.

Сначала немного о Солнце

Наше Солнце – это гигантский естественный термоядерный реактор в небе, который непрерывно высвобождает огромное количество энергии. Если сравнивать Солнце с другими “небесными” термоядерными реакторами, то оно затмевает 85% звёзд нашей галактики.

Насколько оно мощное?

Например, если взять:

  • всю энергию, которое человечество производит за счёт сжигания угля, нефти и природного газа
  • всю энергию от деления урана в ядерных реакторах на атомных электростанциях
  • всю энергию ветра

и просуммируем всё это за год, это полученное значение приблизительно равно энергии, которую Земля получает от Солнца за 7 секунд! При этом, нужно сказать, что на Землю попадает только 0.00000005% энергии вырабатываемой Солнцем.

Эта энергия достигает Земли в виде фотонов и эти фотоны имеют разную длину волны, чем короче длина волны, тем больше энергии он несёт. Так, “фиолетовый” фотон (длина волны 360нм, где нм – нанометр – 10 -9 м) несёт в 2 раза больше энергии чем “красный” фотон (длина волны 720нм). Если чуть-чуть углубиться в физику, то формуле Планка энергия фотона равно E=hν=hc/ λ , где h – постоянная Планка, ν – частота, а λ – длина волны.

Наши глаза способны видеть фотоны только из видимого диапазона, с длинами волн 360 – 720нм. Всё что видим глазами – это видимый свет, если у фотонов не хватает энергии, то это инфракрасные фотоны и наши глаза не способных из увидеть, если слишком много энергии, то это ультрафиолетовые фотоны, наши глаза также не могут их увидеть.

Что от Солнца достигает поверхности Земли

Если посмотреть состав солнечного света достигающего Земли, то 4% от него составляет ультрафиолет, 43% видимый свет и 53% из инфракрасного диапазона. Солнечные панели по большей части работают в видимом диапазоне, также захватывают приблизительно половину инфракрасного диапазона и только самую малую часть ультрафиолетового диапазона.

Почему УФ солнечные батареи – это обман?

Потому что ультрафиолетовое излучение – это малый процент солнечной энергии, поэтому если кто-то попытается вам продать солнечную панель, работающую от УФ-света и УФ-свет это всё что она может “переработать”, то это откровенная ерунда (мягко говоря) по сравнению “обычной” панелью. Если же она каким-то образом работает и как обычная солнечная панель и также использует ультрафиолет, то увеличение генерирующей способности будет не такое большое и составит

5%. В результате, солнечная панель с КПД 20% станет всего-навсего солнечной панелью с КПД 21%.

Поскольку в реальности солнечных панелей, способных хорошо использовать ультрафиолет не существует, даже такое скромное улучшение будет нереалистичным. Хотя, вы можете найти солнечные панели которые более-менее эффективно “перерабатывать” ультрафиолетовое излучение в космосе, но солнечные элементы таких панелей не используются в панелях, которые размещаются на крышах домов.

Солнечный свет в космосе

Как вы уже знаете, Солнце – это гигантский неконтролируемый ядерный реактор и можно подумать, что оно создаёт огромное количество опасной радиации. И вы, чёрт возьми, будете правы. Только есть одно НО. Ядерные реакции происходят глубоко в ядре Солнца и из-за его гигантских размеров радиация просто не может выйти наружу.

Свет сам по себе может с трудом выбраться из солнечного ядра. Так, фотону может понадобиться 100 000 лет, чтобы добраться от ядра до поверхности Солнца. А вот уже оттуда фотону требуется 8 минут и 20 секунд чтобы встретиться с чей-то солнечной панелью.

По сравнению с суммарной излучаемой энергией, Солнце производит лишь незначительное количество высокоэнергетического излучения, такого рентгеновское или гамма-излучение. Но для хрупких органических существ ( то бишь людей), даже незначительное количество такого излучения может стать существенным.

Солнечный свет на поверхности Земли

К тому времени, когда солнечное излучение достигнет верхнего слоя земной атмосферы, его интенсивность составит приблизительно 1366Вт/м² (ссылка на данные, спутник). После прохождения через атмосферу интенсивность излучения уменьшится на 18% и составит 1120Вт/м². Только нужно иметь ввиду, что такая интенсивность будет только в полдень, только на экваторе и только в ясный день.

Поскольку условия редко бывают идеальными, Стандартные Тестовые Условия (STC, Standart Test Conditions) для солнечных панелей – это интенсивность излучения 1000Вт/м². Это означает, что есть у вас есть солнечная панель с номинальной мощность 300Вт, то такое количество ватт она выдаст при интенсивности солнечного излучения 1000Вт на квадратный метр.

Но не переживайте с вашей солнечной электростанцией ничего не случится, в ней ничего не сгорит и не взорвётся даже есть интенсивность солнечного света превысит 1000Вт/м². Производители оборудования и проектировщики солнечных электростанций учитывают это. Они также учитывают, что интенсивность солнечного света будет еще выше, если свет будет светить как бы сквозь отверстие в облаках, а солнечные панели будут одновременно подвергаться воздействию как прямых солнечных лучей, так не прямых лучей, рассеянных окружающими облаками.

Солнечный спектр

Диаграмма ниже взята из Википедии. Она показывает какое количество солнечного излучения достигает поверхности Земли. Жёлтая область диаграммы показывает количество солнечного света попадающего в верхнюю границу атмосферы, а красная показывает какое количество достигает земной поверхности.

Источник: Википедия

В полдень, в районе экватора атмосфера задерживаем

18% процентов проходящей через неё солнечной энергии. Однако график выше – это не мгновенный снимок, снятый на экваторе в полдень при идеальных погодных условиях, а репрезентативный снимок солнечного излучения, в целом падающего на Землю. Поэтому из графика видно, что атмосфера поглощает больше, чем только 18% проходящего света. Утром и вечером солнечные лучи должный пройти более толстый слой атмосферы прежде чем достигнут земли, т.к. лучи падают по касательной к Земле. Также более высокие координаты широт имеют аналогичный эффект.

Из УФ области приведённого графика видно, что атмосфера поглощает более половины ультрафиолетового света, в основном благодаря тонкому озоновому слою (O3 в нижнем левом углу графика). Если двигаться правее по графику, то в видимой области спектра атмосфера задерживает более четверти солнечного света, двигаясь дальше по графику увидим, что из инфракрасной области атмосфера “забирает” несколько больших кусков излучения. Такие большие куски, отсутствующие в ИК области, являются результатом того, что газы в атмосфере поглощают специфические полосы энергии солнечного света.

Видимая область спектра

Если мы отдельно рассмотрим только видимую область солнечного спектра, то обнаружим, что эта область состоит из красивой радуги цветов, как видно из картинки ниже.

Видим, что видимый свет состоит из 7 основных цветов, двигаемся справа налево по спектру: красный, оранжевый, жёлтый, зелёный, голубой, фиолетовый. Но эти цвета можно разделить на громадное число оттенков и назвать их как душе угодно.
Многие из вас, наверное, знают еще из садика мнемоническое правило для запоминания цветов радуги: Каждый Охотник Желает Знать Где Сидит Фазан.

Спектр солнечного света, поглощаемого солнечной панелью

Ниже показан спектр, который мы любезно взяли с сайта University of NSW, этот спектр похож спектр солнечного излучения достигающего поверхности земли, только отличие в том, что грязно-зелёным цветом указана часть спектр, который может поглощать кремниевый солнечный элемент и переводить его в электричество.

У этого графика есть небольшая неточность, которая заключается в том, что согласно ему

49% поглощаемого солнечного света преобразовывается в электричество. На сегодняшний день максимальная эффективность кремниевых солнечных батарей составляет 23%, что более чем в 2 раза меньше, чем из графика. Поэтому ниже показан немного дополненных график, в котором фиолетовым цветом отметили поглощение, соответствующее КПД современных солнечных панелей. (Примечание: горизонтальный участок спектра в диапазоне 500-1100нм – это исключительно предполагаемый вид спектра).

Как вы можете увидеть из левой области графика солнечных панели могут поглощать и преобразовывать часть ультрафиолетовых лучей и эта часть становится немного больше по мере движения в видимую область. Из графика также отчётливо видно, что солнечные панели значительную часть электричества получается из фотонов видимой области солнечного спектра.

В отличие от УФ-области, в инфракрасной части спектра видим вертикальный провал в поглощении или можно сказать отсечку на длине волны 1100нм. Такая отсечка в поглощении связана с тем, что длина волны света становится больше размеров атома кремния и волны просто проходят на сквозь. Те есть кремний становится прозрачным для длины волны 1100нм и выше.

Многопереходные солнечные элементы

Многопереходные или солнечные элементы из нескольких p-n-переходов – это по сути несколько солнечных элементов объединённых в один, каждая часть из которого ориентирована на поглощение определённой части солнечного спектра. На графике ниже (справа) показан спектр поглощения такого солнечного элемента, разными цветами показы области поглощения, за которые отвечают разные p-n-переходы солнечного элемента. Слева показа структура многопереходного солнечного элемента.

Источник фото: Википедия (https://en.wikipedia.org/wiki/Multi-junction_solar_cell)

При обычном солнечном свете КПД таких элементов может достигать 35% и более, а при концентрированном солнечном свете – более 45%. Однако, ввиду дороговизны таких солнечных панелей они они не подходят для использования на крышах домов, а вместо этого используются, в основном, на космических аппаратах, а также специализированных солнечных проектах и исследованиях.

Ультрафиолетовых панелей не существует

На сегодняшний день кремниевые солнечные батареи составляют более 97% мирового производства солнечных панелей. Остальная часть – это почти полностью теллуридно-кадмиевые тонкопленочные панели, производимые, например, такими компаниями, как First Solar. Этот тип панелей использует чуть больше инфракрасного излучения, чем кремниевые, но приблизительно в таком же количестве преобразовывают излучение из УФ области.

В настоящее время учёные работают над тем, чтобы увеличить использование УФ области спектра солнечными панелями. Несмотря на этом, все доступные в настоящий момент солнечные панели – это, во-первых панели видимого света, во-вторых, панели инфракрасного света и только самая малая треть – ультрафиолетовые панели. Как мы выяснили, это связано с тем, что на Землю попадает очень мало УФ-излучения, поэтому соотношение вряд ли изменится. Если какой-либо продавец солнечных панелей говорит, что у него есть ультрафиолетовые панели, то здесь одно из двух, либо он просто пытается обмануть вас, либо просто не понимает о чём говорит.

Мощность и эффективность – вот что на самом деле имеет значение при выборе панели

Поскольку ультрафиолет составляет лишь малую часть энергии в солнечном свете, поэтому количество используемого ультрафиолета в солнечной панели не будет сильно влиять на её конечную производительность. При прочих равных, чем больше солнечная батарея поглощает УФ, тем немного больше её выходная мощность и эффективность, и этими цифрами вы можете оперировать если сравниваете различные панели, но нужно ставить во главу угла то, сколько та или иная панель поглощает ультрафиолет.

Источник

Оцените статью