Журнал «Все о Космосе»
Солнечная батарея (панель)
Солнечная батарея на МКС
Солнечная батарея — несколько объединённых фотоэлектрических преобразователей (фотоэлементов) — полупроводниковых устройств, прямо преобразующих солнечную энергию в постоянный электрический ток, в отличие от солнечных коллекторов, производящих нагрев материала-теплоносителя.
Различные устройства, позволяющие преобразовывать солнечное излучение в тепловую и электрическую энергию, являются объектом исследования гелиоэнергетики (от гелиос греч. Ήλιος , Helios — Солнце). Производство фотоэлектрических элементов и солнечных коллекторов развивается в разных направлениях. Солнечные батареи бывают различного размера: от встраиваемых в микрокалькуляторы до занимающих крыши автомобилей и зданий.
История
Первые прототипы солнечных батарей были созданы итальянским фотохимиком армянского происхождения Джакомо Луиджи Чамичаном.
25 апреля 1954 года, специалисты компании Bell Laboratories заявили о создании первых солнечных батарей на основе кремния для получения электрического тока. Это открытие было произведено тремя сотрудниками компании — Кельвином Соулзером Фуллером (Calvin Souther Fuller), Дэрилом Чапин (Daryl Chapin) и Геральдом Пирсоном (Gerald Pearson). Уже через 4 года, 17 марта 1958 году, в США был запущен первый спутник с солнечными батареями — Vanguard 1. Спустя всего пару месяцев, 15 мая 1958 года в СССР был запущен Спутник-3, также с использованием солнечных батарей.
Использование в космосе
Солнечные батареи — один из основных способов получения электрической энергии на космических аппаратах: они работают долгое время без расхода каких-либо материалов, и в то же время являются экологически безопасными, в отличие от ядерных и радиоизотопных источников энергии.
Однако при полётах на большом удалении от Солнца (за орбитой Марса) их использование становится проблематичным, так как поток солнечной энергии обратно пропорционален квадрату расстояния от Солнца. При полётах же к Венере и Меркурию, напротив, мощность солнечных батарей значительно возрастает (в районе Венеры в 2 раза, в районе Меркурия в 6 раз).
Эффективность фотоэлементов и модулей
Мощность потока солнечного излучения на входе в атмосферу Земли (AM0), составляет около 1366 ватт на квадратный метр (см. также AM1, AM1.5, AM1.5G, AM1.5D ). В то же время, удельная мощность солнечного излучения в Европе в очень облачную погоду даже днём может быть менее 100 Вт/м². С помощью распространённых промышленно производимых солнечных батарей можно преобразовать эту энергию в электричество с эффективностью 9—24 %. При этом цена батареи составит около 1—3 долларов США за Ватт номинальной мощности. При промышленной генерации электричества с помощью фотоэлементов цена за кВт·ч составит 0,25 долл. По мнению Европейской Ассоциации Фотовольтаики (EPIA), к 2020 году стоимость электроэнергии, вырабатываемой «солнечными» системами, снизится до уровня менее 0,10 € за кВт·ч для промышленных установок и менее 0,15 € за кВт·ч для установок в жилых зданиях.
В 2009 году компания Spectrolab (дочерняя фирма Boeing) продемонстрировала солнечный элемент с эффективностью 41,6 %. В январе 2011 года ожидалось поступление на рынок солнечных элементов этой фирмы с эффективностью 39 %. В 2011 году калифорнийская компания Solar Junction добилась КПД фотоэлемента размером 5,5×5,5 мм в 43,5 %, что на 1,2 % превысило предыдущий рекорд.
В 2012 году компания Morgan Solar создала систему Sun Simba из полиметилметакрилата (оргстекла), германия и арсенида галлия, объединив концентратор с панелью, на которой установлен фотоэлемент. КПД системы при неподвижном положении панели составил 26—30 % (в зависимости от времени года и угла, под которым находится Солнце), в два раза превысив практический КПД фотоэлементов на основе кристаллического кремния.
В 2013 году компания Sharp создала трёхслойный фотоэлемент размером 4х4 мм на индиево-галлий-арсенидной основе с КПД 44,4 %, а группа специалистов из Института систем солнечной энергии общества Фраунгофера, компаний Soitec, CEA-Leti и Берлинского центра имени Гельмгольца создали фотоэлемент, использующий линзы Френеля с КПД 44,7 %, превзойдя своё собственное достижение в 43,6 %. В 2014 году Институт солнечных энергосистем Фраунгофер создали солнечные батареи, в которых благодаря фокусировке линзой света на очень маленьком фотоэлементе КПД составил 46%.
В 2014 году испанские учёные разработали фотоэлектрический элемент из кремния, способный преобразовывать в электричество инфракрасное излучение Солнца.
Перспективным направлением является создание фотоэлементов на основе наноантенн, работающих на непосредственном выпрямлении токов, наводимых в антенне малых размеров (порядка 200-300 нм) светом (т. е. электромагнитным излучением частоты порядка 500 ТГц). Наноантенны не требуют дорогого сырья для производства и имеют потенциальный КПД до 85%.
Тип | Коэффициент фотоэлектрического преобразования, % |
---|---|
Кремниевые | |
Si (кристаллический) | 24,7 |
Si (поликристаллический) | 20,3 |
Si (тонкопленочная передача) | 16,6 |
Si (тонкопленочный субмодуль) | 10,4 |
III-V | |
GaAs (кристаллический) | 25,1 |
GaAs (тонкопленочный) | 24,5 |
GaAs (поликристаллический) | 18,2 |
InP (кристаллический) | 21,9 |
Тонкие пленки халькогенидов | |
CIGS (фотоэлемент) | 19,9 |
CIGS (субмодуль) | 16,6 |
CdTe (фотоэлемент) | 16,5 |
Аморфный/Нанокристаллический кремний | |
Si (аморфный) | 9,5 |
Si (нанокристаллический) | 10,1 |
Фотохимические | |
На базе органических красителей | 10,4 |
На базе органических красителей (субмодуль) | 7,9 |
Органические | |
Органический полимер | 5,15 |
Многослойные | |
GaInP/GaAs/Ge | 32,0 |
GaInP/GaAs | 30,3 |
GaAs/CIS (тонкопленочный) | 25,8 |
a-Si/mc-Si (тонкий субмодуль) | 11,7 |
Факторы, влияющие на эффективность фотоэлементов
Особенности строения фотоэлементов вызывают снижение производительности панелей с ростом температуры.
Частичное затемнение панели вызывает падение выходного напряжения за счёт потерь в неосвещённом элементе, который начинает выступать в роли паразитной нагрузки. От данного недостатка можно избавиться путём установки байпаса на каждый фотоэлемент панели.
Из рабочей характеристики фотоэлектрической панели видно, что для достижения наибольшей эффективности требуется правильный подбор сопротивления нагрузки. Для этого фотоэлектрические панели не подключают напрямую к нагрузке, а используют контроллер управления фотоэлектрическими системами, обеспечивающий оптимальный режим работы панелей.
Производство
Очень часто одиночные фотоэлементы не вырабатывают достаточной мощности. Поэтому определенное количество фотоэлементов соединяется в так называемые фотоэлектрические солнечные модули и между стеклянными пластинами монтируется укрепление. Эта сборка может быть полностью автоматизирована.
Источник
Солнечные орбитальные электростанции.
СОДЕРЖАНИЕ
Солнечные орбитальные электростанции.
Одно из возможных направлений развития космических работ в интересах обеспечения насущных нужд человечества — создание солнечных орбитальных электростанций для снабжения энергией наземных потребителей Солнечную энергию можно преобразовать в электрическую разными способами. Но наиболее простой и естественный для нашего случая — использование полупроводниковых преобразователей солнечного светового излучения в электрический ток, т.е. использование солнечных батарей. Уже сейчас получен опыт их длительной эксплуатации в условиях космоса. В качестве преобразователей обычно используются кремниевые элементы — тонкие, небольшого размера (площадью в несколько квадратных сантиметров) пластинки, при попадании на которые солнечного света в результате фотоэффекта возникает разность потенциалов. С одного такого элемента можно снять очень небольшую мощность Коэффициент полезного действия преобразования энергии у такого преобразователя составляет порядка 10- 12%. Чтобы получить практический источник питания из этих элементов, их соединяют вместе в последовательно-параллельной схеме. В результате с 1 кв.м солнечной батареи можно получить мощность порядка 140-170 Вт. Понятно, что такие батареи дают ток только при солнечном освещении, причем указанная мощность снимается только тогда, когда лучи солнца падают перпендикулярно на их поверхность. Поэтому на многих космических аппаратах для увеличения снимаемой мощности устанавливают специальные системы ориентации солнечных батарей. Во время прохождения аппарата в тени Земли приборы и оборудование получают электропитание от аккумуляторных батарей, подзаряженных от солнечных, когда аппарат находится вне тени.
Солнечные орбитальные электростанции представляются пригодными для снабжения Земли электроэнергией. Полученную от солнечных батарей электроэнергию можно преобразовать в радиоизлучение и с помощью остронаправленной антенны орбитальной электростанции в виде узкого пучка лучей передать на приемную антенну, расположенную на поверхности Земли. Принятое радиоизлучение там можно обратно преобразовать в электроэнергию и направить потребителям. Чтобы орбитальные электростанции имели непрерывную и кратчайшую связь с наземными приемными станциями, их целесообразно размещать на геостационарной орбите.
Главное на пути к созданию солнечных орбитальных электростанций — научиться строить в космосе гигантские конструкции, которые должны быть легкими и разворачиваемыми на орбите. Начинать можно, например, со сборки ажурной панели-блока размером, например, 100X100X100 м. А затем, постепенно соединяя между собой такие блоки, наращивать площадь конструкции до десятков квадратных километров. С панели площадью 100 кв.км можно было бы снять мощность до 10 млн. кВт. Для передачи энергии на Землю на такой орбитальной электростанции потребуется антенна с площадью около квадратного километра. Наземная приемная антенна будет при этом иметь диаметр порядка нескольких километров. Скорее всего, окажется целесообразным не только сборку, но и изготовление элементов блоков-панелей вести на орбите. То есть доставлять туда, скажем, рулоны металлической ленты, там ее резать и изготовлять из нее стержни, из которых собирать потом ферменные конструкции панелей. Конечно, могут быть найдены и другие технологии изготовления и сборки панелей.
Разумеется, на эти гигантские конструкции невозможно устанавливать современные пластинки солнечных батарей — это было бы слишком тяжело и дорого, так как сейчас квадратный метр солнечных батарей имеет массу в несколько килограммов. Но в последние годы не без успеха ведутся работы по созданию пленочных солнечных батарей, масса квадратного метра которых может составлять несколько сот граммов. С учетом массы фермы и других элементов конструкции, приведенная масса квадратного метра панели солнечной электростанции должна составить примерно килограмм на квадратный метр панели и соответственно примерно 10 кг на киловатт установленной мощности (должна в том смысле, чтобы при этом создание солнечной электростанции было бы рентабельным, и это представляется достижимым) Киловатт мощности орбитальной электростанции мог бы при этом стоить около 2-3 тыс. руб. (при условии решения транспортной проблемы). Это в 1,5-2 раза дороже, чем у атомных станций, в 2-2,5 раза дороже, чем у гидроэлектростанций и в 4-6 раз дороже, чем у тепловых электростанций. Однако орбитальные электростанции не расходуют природных ресурсов, и через несколько лет эксплуатации они могут оказаться рентабельнее и тепловых и атомных. А главное, эти станции будут экологически чистыми.
Сложнейшей проблемой солнечных орбитальных электростанций является проблема доставки на орбиту материалов для ее строительства. Масса станции мощностью 10 млн. кВт может составить около 100 тыс. т. Для решения этой задачи потребуется создать совершенно новый тип многоразовых ракет-носителей. С одной стороны, это должны быть достаточно большие машины, способные выводить полезный груз массой, скажем, порядка 500 т, с тем, чтобы за 2-3 года (при темпе 70-100 пусков в год) можно было бы доставить строительные материалы одной станции на орбиту и с такой скоростью вести строительство. С другой стороны, чтобы это предприятие было рентабельным, необходимо, чтобы стоимость выведения на таком носителе была бы не больше 50 руб. за килограмм полезного груза. Если сравнить эту величину со стоимостью доставки на орбиту с помощью системы «Шаттл» (порядка 10 тыс. долл/кг), становится ясной сложность решения этой задачи Нужно снизить стоимость доставки на два порядка. Но эта задача не безнадежная. Система «Шаттл» существенно проигрывает по экономичности даже современным одноразовым носителям почти на порядок. А снижение расходов на порядок при переходе к новому типу многоразовых носителей не представляется невозможным. Конечно, нужно одновременно решить и задачу доставки выведенных на низкую промежуточную орбиту материалов с этой промежуточной орбиты на геостационарную.
Причем и на этой трассе расходы должны быть такого же порядка, т.е. и для этой трассы придется создавать дешевые многоразовые средства, скорее всего, использующие солнечные батареи и электрореактивные двигатели.
Ориентация гигантских ферменных панелей на Солнце представляется вполне решимой задачей. Ведь практически придется вращать панель с постоянной скоростью, равной одному обороту в год.
Для строительства станции на орбите потребуется создать специализированное производство. Потребуются строители. Для них потребуются жилища — орбитальные станции. Конечно, все производство должно быть максимально стандартизировано и автоматизировано. Строительство должны будут вести в основном роботы. Поэтому людей там должно быть немного. Работать на орбите они могут, скажем, не более года за одну «командировку», и, следовательно, искусственная тяжесть на строительных станциях не понадобится.
Есть, конечно, и много других проблем на пути создания солнечных орбитальных электростанций: преобразование гигантских мощностей электроэнергии в радиоизлучение, бортовая направленная антенна с диаметром порядка километра, средства приема мощного потока радиоизлучения и его обратного преобразования в электроэнергию и т. п. Но все эти проблемы лежат в области реального.
Идеи космических электростанций привлекают потому, что они могут внести существенный вклад в решение одной из самых сложных задач, стоящих перед человечеством, — задачи создания экологически чистой энергетики. Здесь нет попытки убедить читателя в том, что солнечные орбитальные электростанции являются единственно целесообразным вариантом решения этой задачи. Всерьез этот вариант можно сравнить с другим только после разработки соответствующих конкурирующих проектов. Но это одно из возможных и обнадеживающих решений.
Орбитальные заводы
Автоматические заводы на орбите представляются перспективным и возможным делом Невесомость, и вакуум могут выгодно использоваться для производства сверхчистых препаратов и материалов, нужных в современной медицине и в промышленности. Конечно, абсолютной невесомости на орбитальных аппаратах быть не может — она есть только в центре масс аппарата. А в точках, удаленных от центра масс на метры, ускорения будут составлять величины порядка миллионной доли ускорения силы тяжести на Земле. Тем более не является абсолютным вакуум на орбитах с высотой порядка 500 км. Но все же и ускорения микрогравитации, и давление окружающей атмосферы на этих высотах достаточно малы, что создает хорошие условия для не которых видов производства. Малые ускорения микрогравитации позволяют практически исключить из процессов сепарации и кристаллизации влияние конвекции разделения элементов в смеси под действием силы тяжести и резко снизить число дефектов, образующихся при кристаллизации. Уже выполненные экспериментальные работы на орбитальных станциях, пилотируемых и автоматических космических аппаратах по исследованию эффективности различных технологических процессов на орбите показывают на улучшение качества процессов в условиях невесомости. Но пока мы еще не вы шли на уровень, позволяющий сделать определенные выводы и приступить к проектированию орбитальных заводов.
Сегодня представляются перспективными направления работ по технологическим процессам, связанным с очисткой биологических препаратов на всякого рода электрофоретических установках для фармацевтической промышленности, с выращиванием кристаллов материалов, используемых в электронной промышленности, с увеличением чистоты и относительной массы выхода получаемого продукта, с производством оптического стекловолокна для волоконной оптики, которое в условиях орбиты может дать более качественную продукцию и оказаться более экономичным, чем на наземных установках.
Радиотелескопы
Радиотелескопы, выводимые на околоземные орбиты, или, что еще более эффективно, на орбиты спутников Солнца, могут быть одним из наиболее эффективных средств исследования Вселенной. При размерах приемных антенн радиотелескопов порядка сотен метров можно будет принимать сигналы от объектов, находящихся на окраинах нашей Вселенной. Если вести наблюдение с помощью нескольких радиотелескопов, разнесенных на расстояния порядка диаметра солнечной орбиты, то, используя принцип интерферометрии, можно получить, как уже было сказано, совершенно фантастическую разрешающую способность порядка десятимиллионных долей угловой секунды. Сами размеры приемных антенн порядка сотен метров не должны смущать — задача создания конструкций таких размеров в условиях невесомости вполне под силу современной технике Принципиальной проблемой окажется обеспечение точности поверхности антенны. Ведь нужно будет обеспечить точность порядка долей длины волны, на которой будут проводиться измерения. Например, при ведении наблюдений на длине волны 20 см нужно будет обеспечить точность поверхности порядка сантиметров при размерах конструкции порядка километра! И при этом не допускать тепловых деформаций конструкции, больших этих же величин. Проблему, по-видимому, придется решать за счет введения регулирующих элементов и лазерной измерительной системы.
Источник