- Солнечные панели для частного дома: поставь светло себе на службу
- Что это?
- Критерии выбора
- Структура домашней солнечной электростанции
- Зависимый от сети вариант (электростанция, ведомая сетью)
- Автономная схема
- Полуавтономная (гибридная) система
- Монокристаллические
- Поликристаллические модули
- Аморфные
- Остальные
- Мощность и количество
- Солнечные батареи для умного дома: основные виды и анализ их эффективности
- Принцип работы солнечных батарей
- Классификация солнечных батарей
- Солнечная энергия для отопления
- Принцип работы панелей с фотоэлементами
- Эффективность использования фотоэлементов
- Виды солнечных батарей
- Монокристаллические
- Поликристаллические
- Тонколистовые
- Установка солнечных батарей на крыше
- Плюсы и минусы альтернативной отопительной системы
Солнечные панели для частного дома: поставь светло себе на службу
Использовать в частных домах и даже дачных домиках альтернативные источники энергии сегодня стало модной тенденцией. Впрочем, это достаточно практично и, как правило, выгодно. Первенство среди таких устройств получили солнечные панели для частного ома (солнечные батареи, солнечные электростанции). Связано это с ежегодным ростом (весьма солидным) производства, снижением цен, многочисленными наработками, упрощающими подбор оборудования и построение систем.
Что это?
Основу любой системы составляют солнечные панели. Они выполняют роль основного источника энергии и, зачастую, становятся наиболее дорогой составляющей.
От их взвешенного выбора зависит:
- производительность домашней электростанции;
- объемы и стоимость работ по монтажу и обслуживанию;
- цена покупки;
- характеристики остальных звеньев.
Критерии выбора
Единственным критерием при проектировании домашней электростанции и выборе оборудования для нее должна стать целесообразность.
Однако понятие это широкое, для его понимания потребуется учет многих факторов:
- Средней и максимальной потребляемой мощности.
- Производительности солнечных модулей.
- Наличия стационарной электросети и режима совместной с ней работы.
- Географического положения местности и климатических условий.
- Финансовых возможностей владельца дома.
Структура домашней солнечной электростанции
Определяется двумя основными положениями:
- Целью создания и использования.
- Работой совместно со стационарными электросетями.
Соответственно, рассматривать можно 3 варианта организации солнечного электроснабжения дома:
- Зависимый от электросети.
- Полуавтономный с резервированием.
- Полностью автономный.
Зависимый от сети вариант (электростанция, ведомая сетью)
Такая электростанция строится по простейшей схеме. В ее состав входят:
- Солнечные панели в качестве альтернативного источника энергии.
- Инвертор, преобразующий постоянное напряжение на выходе фотоэлементов в переменное напряжение для потребителей.
Гелиобатареи подключаются на вход инвертора. Его выход соединен с сетью (после счетчика). Основная особенность схемы – отсутствие промежуточных накопителей энергии (аккумуляторов) и устройства для их заряда.
При такой структуре приборы в доме потребляют электроэнергию от солнечных элементов через инвертор. Недостаток мощности восполняется сетью, и, наоборот, ее избыток (например, когда батареи работают в номинальном режиме, а потребители выключены), сбрасывается в сеть.
Достоинства такой схемы:
- Минимальная стоимость по сравнению с другими вариантами.
- Простота настройки и регулировки.
Есть у нее и серьезный недостаток – при отсутствии сетевого напряжения (во время отключения электроэнергии) система не работает.
Автономная схема
В этой системе отсутствует сеть, а электроснабжение дом полностью производится от солнечных батарей.
Такой функционал диктует схему построения:
- Источник энергии – солнечные панели.
- Накопитель (аккумулятор) – берет на себя питание потребителей, когда батареи не вырабатывают электроэнергию (например, в ночное время).
- Контроллер заряда аккумуляторов – устройств, управляющее зарядом накопителей и потребление энергии от фотопанелей.
- Инвертор, как и в предыдущем варианте, преобразующий постоянное напряжение в переменное.
Система работает следующим образом:
- При наличии освещения солнечные батареи вырабатывают энергию.
- Она поступает на вход контроллера, преобразующий ее параметры в нужные для заряда батарей. Аккумуляторы подключены к его выходу.
- К выходу контроллера и зажимам АКБ подключаются входные цепи инвертора. Он преобразует напряжение и подает питание в сеть дома (не путать с централизованной).
Таким образом, при включенных электроприборах они получают энергию непосредственно с солнечных панелей (через контроллер и инвертор), когда светит Солнце. Одновременно, если есть избыток мощности, заряжаются аккумуляторы. Когда солнечный источник не работает, АКБ отдают накопленную энергию (через инвертор) потребителям.
Однако за красивой картинкой обязательно скрываются «подводные камни»:
- Стоимость электростанции выходит весьма значительной.
- Если по каким-либо причинам наблюдается длительный перерыв в работе панелей (поверхность покрыта снегом в зимнее время, дождевые тучи на неделю закрыли Солнце и т.д.), запасенной в аккумуляторах энергии не хватит для работы потребителей.
Решить проблему поможет резервный источник электроэнергии. В вариантах полностью автономных систем его роль может выполнять ветро- или гидро-, дизельный или бензиновый генератор. При наличии сетевого ввода резервным источником выступит стационарная электросеть, а система превратиться в полуавтономную.
Полуавтономная (гибридная) система
Схема такой электростанции практически полностью повторяет предыдущую за единственным исключением – для заряда накопителей используется энергия не только от солнечных панелей, но и от сети. В этом случае контроллер, кроме управления зарядными процессами, получает дополнительную функцию.
В настройках контроллера можно задать приоритет источников:
- При выборе солнечных батарей работающие электроприборы будут, по возможности, запитаны от них, а от сети будут потребляться недостающая мощность и подзаряжаться аккумуляторы.
- При выборе сети до пороговой мощности будет работать стационарный источник, а дополнительную энергию обеспечат гелиопанели.
Монокристаллические
Такие батареи визуально выглядят как панели с сегментами глубокого черного цвета. Получили название за счет конструкции на основе монокристаллов кремния.
Самый существенный недостаток — строгая ориентировка оптических осей кристаллов, что требует точного позиционирования панелей для получения максимальной отдачи. По этой же причине монокристаллы не терпят затенения – генерация энергии значительно снижается.
В настоящий момент обладают самым высоким КПД преобразования – около 22%. При этом стоимость тоже наиболее высокая – порядка 0.9-1.1 доллара за 1 Вт генерируемой мощности.
Поликристаллические модули
Название такие батареи получили за счет размещения на подложке множества кремниевых кристаллов с хаотически ориентированными оптическими осями. Визуально такие модули отличаются синим цветом с «морозным» рисунком.
Естественно, такое расположение кристаллов вызвало потерю КПД преобразования – он находится на уроне 11-16%. Однако это же позволило увеличить эффективность работы при рассеянном свете, что в результате привело к созданию панелей, которые успешно конкурируют с монокристаллическими (при прочих равных, например, размерах) по мощности генерации. Более того, по цене они значительно выигрывают и обходятся в 0.7-0.9 доллара за 1 Вт.
Аморфные
Технология изготовления рабочего тела сходна с поликристаллическими, но в качестве основы выступает аморфный кремний (aSi). При КПД в пределах 8-11% отличаются высокой эффективностью работы в рассеянном свете, могут захватывать и инфракрасный диапазон. В результате обладают лучшей стоимостью – порядка 0.5-0.7 доллара за 1 Вт.
Кроме того, имеют солидное преимущество – гибкую основу. Это означает, что для монтажа не требуется жестких конструкций, материал легко клеится на поверхности любой формы.
Остальные
Модули, предлагаемые производителями, могут быть изготовлены и по другим технологиям:
- Микроморфные, отличаются высокой отдачей при рассеянном и инфракрасном излучении.
- Гибридные, использует несколько полупроводниковых материалов и обеспечивают высокий КПД преобразования (до 44%).
- Полимерные, гибкие с подложкой из полимерных материалов, абсолютные лидеры по стоимости.
Такие предложения следует тщательно изучать, некоторые из них могут оказаться намного выгоднее, чем лидирующие на рынке панели, выполненные по стандартным технологиям.
Вообще, монокристаллические панели можно рекомендовать для установки только жителям южных регионов. Остальным следует выбирать поликристаллы или панели по другим технологиям.
Мощность и количество
Определить, какое количество солнечных панелей необходимо, следует по средней и максимальной мощности потребления. Среднюю легко найти в счетах за электроэнергию – месячное потребление делится на количество дней в месяце. Максимальное находится суммированием мощностей всех имеющихся в доме электроприборов.
Кроме мощности потребителей необходимо учесть:
- Время работы солнечных батарей. Как правило, принимается равным 6 часам, соответственно, мощность генерации нужно кратно увеличить.
- Потери на преобразование при зарядке аккумуляторов и получении переменного напряжения на инверторе. С их учетом необходим запас по мощности не менее 30%.
- Пиковые токи. Например, при средней мощности стиральной машины 500 Вт при работе нагревателя может потребляться до 2 кВт. При пуске насосов или других двигателей, пусковые токи могут превосходить номинальные значения в 5-6 раз. Конечно, львиную долю примут на себя аккумуляторы, но запас модулей по току в 20-30% не помешает.
- Географию и погодные условия местности – коэффициент инсоляции. Найти его для зимнего и летнего времени можно в справочниках.
После расчета необходимой мощности генерации рассчитывается мощность, отдаваемая одной батареей:
Где:
- Кс – стандартный сезонный коэффициент, 0.5 для лета и 0.7 для зимы.
- Wn – мощность панели, заявленная производителем.
- Ki – коэффициент инсоляции, также берется для лета и зимы.
Рассчитанную необходимую мощность генерации делят на оба (летнее и зимнее) значения. Наибольшее из двух чисел будет минимальным количеством панелей, которые потребуются для электроснабжения дома.
Источник
Солнечные батареи для умного дома: основные виды и анализ их эффективности
Солнечная энергетика на сегодня является одним из наиболее экологически чистых способов получения электричества и тепла. Интерес к этой сфере растёт с каждым годом, в том числе и с точки зрения автономного энергообеспечения «умного дома». Разберём подробнее, выгодны ли солнечные батареи в частном доме, какие их виды имеются в продаже, каковы нюансы их использования для получения электричества и отопления помещений.
Принцип работы солнечных батарей
Принцип работы солнечной энергоустановки основывается на полупроводниковом эффекте. Впервые данный эффект был открыт французским физиком Беккерелем ещё в первой половине 19 века. Реально действующий полупроводник был создан в 1873г., однако, до середины ХХ века не удавалось создать эффективно работающей солнечной батареи, способной вырабатывать значительное количество электричества.
Основу конструкции составляет кремний, как один из наиболее эффективных полупроводников. Из него изготавливаются фотоэлементы, составляющие верхний слой пластин батареи. Под воздействием солнечных лучей в блоке преобразователя начинается высвобождение из атомов кремния отрицательно заряженных частиц. Высвободившиеся электроны захватываются атомами нижерасположенной пластины. В соответствии с физическими законами они стремятся вернуться в своё первоначальное положение.
Возвращаясь в верхнюю кремниевую пластину, они перемещаются по тонким проводам, при этом частью своей энергии заряжая аккумулятор, подключённый к фотоэлементам. Работа солнечных батарей, созданных на основании монокристаллической методики нанесения кремниевого слоя, намного эффективней. Это связано с тем, что в данном случае образуемая кремнием кристаллическая решётка имеет меньшее число граней, а это даёт электронам возможность прямолинейного передвижения.
Классификация солнечных батарей
На сегодня существует большое количество преобразователей солнечной энергии, которые условно классифицируются по нескольким признакам. По количеству вырабатываемой электроэнергии солнечные панели бывают:
- Маломощные, предназначаемые для электропитания и подзарядки различных гаджетов – ноутбуков, смартфонов, переносных приборов, небольших телевизоров и т.д.
- Универсальные. Способны обеспечить энергией не только маломощные устройства, но и некоторые бытовые приборы, например, лампы освещения.
- Собственно солнечные батареи, состоящие из целого ряда фотоэлементов, закреплённых на подложке. Такие панели могут применяться для энергообеспечения коттеджа, подсобных надворных построек, для дачи.
По своей конструкции электрогенераторы, работающие на солнечной энергии, подразделяют на:
- Фотоэлектрические. Представляют собой полупроводниковую конструкцию, в которой происходит преобразование тепловой энергии солнца прямиком в электроэнергию. Несколько фотоэлементов объединяются в единую батарею, действующую по принципу полупроводников, описанному выше.
- Гелиоэлектростанции. Генерирующие устройства данного типа концентрируют энергию солнца, направляя её на движение турбин или прочих устройств, вырабатывающих ток. Принцип концентрации состоит в использовании линз, либо зеркальных поверхностей вогнутой формы. Сфокусированный солнечный луч направляется на некую ёмкость с теплоносителем, который закипает и превращается в перегретый пар. Далее пар пропускается через турбины, вращая их, и вырабатывая электрический ток. В данном случае работа солнечных батарей менее эффективна, так как значительная часть энергии тратится на нагрев и испарение теплоносителя.
- Тепловые коллекторы – солнечные батареи для отопления частного дома. Относятся к классу низкотемпературных устройств. Принцип действия их прост: аккумулируемая энергия солнечного излучения преобразуется в тепловую, идущую на нагрев воды в системе горячего водоснабжения и отопительном контуре дома. Эффективность работы солнечных батарей подобного типа напрямую зависит от их площади: чем она больше, тем до высших показателей они разогревают воду.
Солнечная энергия для отопления
Одна из областей применения гелиоустановок в системе «умный дом», это отопление помещений в холодное время года, а также нагрев воды, используемой для бытовых нужд в системах горячего водоснабжения. Современные модели солнечных панелей и коллекторов могут функционировать и в зимнее время, когда температура воздуха опускается до -30 о С. Таким образом, они могут составить достойную конкуренцию традиционным способам обогрева частного дома.
Принцип работы панелей с фотоэлементами
Отопление дома от солнечных батарей может производиться двумя способами:
- Методом непосредственного нагрева теплоносителя (воды, антифриза) в отопительной системе. Производится это с помощью концентрации солнечных лучей на баках-накопителях, или трубчатых контурах, по которым перемещается вода.
- С помощью солнечных панелей, вырабатывающих электроэнергию. В данном случае работа солнечных батарей по обогреву жилья аналогична действию электроэнергии из общей энергосети.
Действуют панели с фотоэлементами при нагреве воды в отопительном контуре по следующему принципу — комплекты солнечных батарей, превращая энергию лучей солнца в электроэнергию, заряжают аккумуляторные батареи. От них ток поступает в инверторы, преобразующие его по напряжению, частоте, силе. Оттуда электричество подаётся непосредственно на нагревательные приборы, например, на электрокотел.
Эффективность использования фотоэлементов
Преимущество солнечных панелей перед гелиоколлекторами состоит в возможности аккумуляции электричества. А это, в свою очередь, позволяет интегрировать водонагревательную систему, основанную на солнечных батареях, в комплекс «умный дом». Для этого можно использовать датчики и реле, самостоятельно запускающие электроподогрев отопительной системы при снижении температуры ниже установленных показателей.
Также возможно подключение внешнего управления процессом поддержания тепла в доме при помощи интернет-соединения и любого гаджета, имеющего выход во всемирную паутину – смартфона, ноутбука, ПК. Эффективность использования фотоэлементов, по сравнению с гелиоколлекторами состоит в возможности автономной или управляемой регулировки их работы. Наличие заряжаемой аккумуляторной батареи позволяет меньше зависеть от капризов погоды, всегда поддерживать комфортную температуру во внутренних помещениях.
Виды солнечных батарей
Сегодня существует несколько видов солнечных батарей, различающихся по своей конструкции и эксплуатационно-техническим показателям.
Монокристаллические
При изготовлении монокристаллических панелей используют кремний высокой степени очистки. Получить подобный материал возможно только промышленным способом с применением специальных технологий. Такие гелиосистемы довольно дорогостоящи, но отличаются большим КПД, который составляет в среднем 15-20%, а в отдельных случаях достигая даже 20%.
Поликристаллические
В данных конструкциях кремний наносится на основание поликристаллическим способом, что снижает эффективность работы солнечных батарей. Дело в том, что в таких кристаллических решётках электроны не могут передвигаться прямолинейно, и отдают в единицу времени меньше заряда. Метод изготовления поликристаллических панелей состоит в нанесении расплавленного кремния на основание, с последующим медленным охлаждением.
Поверхность их отличается ярко-синим цветом. Такие модификации гелиосистем имеют меньшую себестоимость, но и эффективность их также невысока. КПД поликристаллических панелей не превышает 10-12%. Следовательно, для получения 1 Вт электроэнергии потребуется большая площадь фотоэлементов, чем при использовании монокристаллических батарей. А это нивелирует их основное преимущество – низкую стоимость.
Тонколистовые
Тонколистовые солнечные панели изготавливают из аморфного кремния, который наносится на тонкую гибкую основу. Сверху кремниевый слой покрывается защитной плёнкой, предохраняющей его от механических повреждений. Подобные конструкции имеют самую низкую цену за квадратный метр, но, вместе с тем, и самую низкую эффективность. КПД их составляет всего лишь 5-7%. Также невысок и срок их эксплуатации: со временем их технические качества ещё больше снижаются.
Установка солнечных батарей на крыше
Эффективность работы гелиопанелей во многом зависит от правильного их размещения. При установке солнечной батареи на крышу дома, следует соблюдать ряд правил. Во-первых, устанавливать их нужно с наиболее освещённой стороны, то есть с южной и восточной. Другой немаловажный фактор, это угол наклона панели по отношению к горизонту. Поскольку солнце движется под некоторым углом к земле, то и его лучи падают также под наклоном.
Как использовать солнечные батареи, чтобы максимально полно улавливать солнечное излучение? Специалисты рекомендуют выбирать угол наклона плоскости батареи в соответствии с широтным расположением населённого пункта. Например, Москва находится на широте 55 градусов, значит, и солнечную батарею на московских крышах лучше всего устанавливать под углом 55 о по отношению к плоскости земли.
Плюсы и минусы альтернативной отопительной системы
Дом с солнечными батареями, несомненно, является высокотехнологичным продуктом научно-технического прогресса. Однако, системы обогрева, основанные на использовании солнечной энергии, имеют как свои неоспоримые достоинства, так и недостатки. К плюсам следует отнести:
- Экологичность технологии. При выработке «солнечного электричества» не выделяется никаких вредных для человека и природы веществ. Чего нельзя сказать при использовании для нагрева отопительного котла угля или дров.
- Полная автономность. Нагревательные гелиоустановки позволяют абсолютно не зависеть от коммунальных служб, и от их сезонного графика отключения-подключения отопления.
- Отсутствие бюрократических проблем. Для установки и подключения систем солнечного энергоснабжения не потребуется получение разрешительных документов от всевозможных инстанций.
Но имеется в этой достаточно благостной картине и своя ложка дёгтя. Это вопрос окупятся ли солнечные батареи, установленные в частном доме. Стоимость панелей высока, а для нормального автономного функционирования жилого дома требуется значительная площадь генерирующих поверхностей. Как показывают расчёты, полностью окупятся они не ранее трёх лет с начала использования. И то, это при условии активной эксплуатации и размещения в регионе с высоким уровнем солнечного излучения. В районах, где количество ясных дней невелико, сроки окупаемости будут ещё длиннее.
И все же солнечная энергетика на данный момент является одним из самых перспективных сфер развития научно-технического прогресса. Благодаря новым разработкам и научным открытиям, эффективность гелиоэнергетики будет расти, а себестоимость наоборот — снижаться. Всё это делает использование солнечных батарей в системе «умный дом» достаточно правильным решением.
Источник