Солнечные панели для оконных

Окна батареи. Прозрачные солнечные батареи. Работа и применение

Сравнительно недавно на рынке солнечной энергии стали появляться инновационные разработки, которые предполагают применение оконных стекол в качестве солнечных батарей. Это очень перспективная технология, которая может найти применение не только в городских высотках, но и во многих иных отраслях. При этом над возможностью преобразования окон в окна батареи работает множество компаний.

Одни предлагают устанавливать тонкие полосы кремниевых фотоэлементов прямо между стеклами в стеклопакетах. По внешнему виду подобные окна батареи напоминают открытые жалюзи, в результате они не перекрывают вид из окна. Другие предлагают использовать для окон стекла со специальным полупрозрачным покрытием. Подобный слой является активным, он преобразует световое излучение в электрическую энергию, аккумулируя в специальных полупрозрачных проводниках. Другие предлагают наклеивать на стекло пленку, обладающую свойствами солнечной батареи.

Устройство

Окна батареи в настоящее время выпускаются двух типов: на гибких подложках и на стеклянных основаниях. Но есть и другие разработки.

  • Гибкие варианты напоминают тонировочную пленку, их наклеивают на прозрачные конструкции (панели остекления фасадов, окна и так далее). Их светопропускная способность составляет порядка 70%, что фактически не снижает уровня освещенности помещения. Делают их из гибкого композитного материала, который схож с пластиком.
Читайте также:  Солнечные батареи для автомобильных аккумуляторов своими руками

  • Второй вариант прозрачных панелей предполагает нанесение двухслойной пленки на закаленное стекло. На закаленную стеклянную подложку (в некоторых случаях триплекс) наносится тонкая пленка аморфного кремния. На нее сверху напыляется прозрачная микропленка кремния. Микропленка преобразует ИК-лучи, а аморфный кремний — видимый спектр.

  • Ряд компаний решили не создавать полностью прозрачный фотоэлектрический элемент. Вместо этого они решили взять TLSC, то есть прозрачный люминесцентный солнечный концентратор. TLSC–материал состоит из органических солей, он поглощает невидимое глазу излучение инфракрасного и ультрафиолетового спектра, в результате оно преобразуется в инфракрасные волны некоторой длины (они также невидимы). Указанное инфракрасное излучение идет к краям пластины, где установлены тонкие полоски фотоэлектрических солнечных батарей.
  • Последней разработкой ученых является абсолютно прозрачный материал, который при поглощении солнечного света может генерировать его электричество. Материал представляет пленку из полупроводникового полимера, который насыщен углеродными «мячиками» фуллеренов. Уникальность этого материала в том, что при определенных условиях он формирует упорядоченную структуру, которая напоминает пчелиные соты при многократном приближении.

Принцип действия

  • Прозрачные пленки для окон содержат активный люминесцентный слой. Небольшие органические молекулы поглощают определенные длины волн солнечного света. При этом имеется возможность настраивать структуру под определенные длины волн. Так эти материалы могут поглощать лишь ультрафиолет и лучи с практически инфракрасной длиной волны, чтобы впоследствии «подсвечивать» иную длину волны в инфракрасном диапазоне.
  • «Светящийся» инфракрасный свет может быть преобразован в электроэнергию при помощи тонких полосок фотоэлектрических солнечных элементов батареи. Вследствие того, что указанные материалы не излучают и не поглощают свет в видимом спектре, то смотрятся они для человеческого глаза абсолютно прозрачно.
  • Совершенно новый подход в создании окна батареи демонстрирует технология создания материала, который создает электрический ток при его облучении. Происходит это так:
Читайте также:  Кабель для солнечных панелей 16мм

— Через тонкий слой материала, который находится в жидком состоянии, направляются микроскопические капли воды.
— По мере остывания полимера капли равномерно распределяются по поверхности и испаряются.
— В результате создается текстура из шестиугольников, их плотность определяется скоростью испарения и определяет эффективность переноса заряда. Другими словами, чем плотнее упаковка, тем эффективнее материал.
— Нити полимера распределяются по граням шестиугольников. При этом они остаются пустыми, а сам материал выглядит практически полностью прозрачным. Однако плотно упакованные нити вдоль граней превосходно поглощают солнечный свет, а также проводят электрический ток, который в том числе создается при облучении солнечным светом материала.

Особенности
  • Главная особенность уже создаваемых панелей заключается в применении невидимого спектра солнечных лучей, то есть его ультрафиолетовой и инфракрасной частей.
  • Поглощение и «переработка» инфракрасного излучения позволяет добиться важного достоинства — минимизация теплового воздействия. Это крайне важно для стран с жарким климатом. Именно ИК-спектр лучей приводит к нагреванию поверхностей и необходимости охлаждать их. Прозрачные панели солнечных батарей поглощают ИК-лучи, при этом не разогреваются сами. В результате можно минимизировать траты на системы охлаждения.
  • На текущий момент освоенные технологии прозрачных солнечных батарей демонстрируют малый КПД. Но с усовершенствованием технологий КПД будет повышаться. Даже малая производительность будет окупаться отсутствием необходимости поиска места установки и легкостью монтажа. Значительная площадь стеклянных конструкций, которые фактически не приносят практической пользы, позволит вырабатывать существенное количество электроэнергии.
Достоинства и недостатки
К достоинствам можно отнести:
  • Удобство применения, нет необходимости искать дополнительное место для развертывания батарей, ведь они сами размещаются в стекле. Они не занимают места.
  • Легкость монтажа.
  • Экологичность.
  • «электростекла» отбирают часть энергии света, вследствие чего здания меньше нагреваются. Это позволяет снизить затраты на вентиляцию и кондиционирование. Особенно это актуально в странах с солнечным и жарким климатом.
  • Возможность широкого применения.
Читайте также:  Лучший комплект солнечных батарей
К недостаткам можно отнести:
  • Окна батареи не совершенны и многие из них забирают часть света, которое должно попасть в помещение.
  • Низкий КПД.
  • Малая распространенность.
  • Не проработанность технологий.
Перспективы и применение
Окна батареи в ближайшем будущем вполне могут заменить обычные стекла в:
  • Домах и других зданиях.
  • Электронных приборах.
  • Автомобилях.

Некоторые компании уже производят стекла в небольших количествах для установки в зданиях, это японская корпорация Sharp и ряд других. Возможности применения подобного изобретения довольно обширны, но эффективность технологии на данный момент ограничивается несовершенством технологии. Уже апробированные технологии обеспечивают всего 1%, а более продвинутые — 5-7%.

Тем не менее, перспективы прозрачных солнечных батарей обширны. Так замена дисплея смартфона или ноутбука на новый «солнечный» экран позволит существенно увеличить срок его работы без подзарядки. Города будущего смогут превратиться в экологичные электростанции без установки дополнительного оборудования — здания смогут сами себя снабжать энергией.

Источник

Солнечные окна изменят мировой рынок

Солнечные окна и квантовые точки делают окно источником энергии

Плюсы и минусы солнечных окон

Как делают окна будущего

Альтернативы пленкам есть: окна с квантовыми точками

Между тем, Solar Window не единственная компания, которая преуспела в создании инноваций, позволяющих использовать пространство окна для пополнения и умножения солнечной энергии. Группа американских инженеров из лаборатории в г. Лос-Амос смогла добиться того, чтобы солнечные панели были встроены непосредственно в окно без ущерба для его светопрозрачности.

Стекло превращается в солнечную батарею с помощью «вживленных» в него квантовых точек. Их называют ЛСК — люминесцентные солнечные концентраторы. ЛСК собирают энергию солнца как цветок и направляют свет с больших площадей на микроэлементы. Особенностью ЛСК является то, что ими можно управлять. Например, можно настроить пучок таких точек на сбор света с фиксированной длиной волны и игнорирование всех других волн. Состоят такие квантовые точки из полупроводников и поливинилпирролидона.

Преимущество технологии в долговечности продукта и его устойчивости к различным атмосферным явления. Кроме этого, квантовые точки хорошо интегрируются не только на стекло стандартных размеров, но и в огромные фасадные панели из стекла и полностью исключает необходимость использования дорогих фотоэлектрических материалов. До внедрения в массовое производство инновации не хватает хороших показателей по КПД: 6%. Пока эта цифра остается на отметке 1,9%. При хороших результатах новинка обещает сделать нулевым потребление энергии в городах. Скажем, 12 000 панелей в окнах Всемирного делового центра обеспечат электричеством 350 жилых помещений.

Крыша дома моего – это электрогенератор!

Зеленая энергетика – в массы!

Tesla наиболее известная в производстве энергогенерирующих крыш, но не единственная. Интерес к возобновляемым источникам энергии заставил многих производителей задуматься об их эргономике, эстетике и интеграции в привычную среду: ведь в чистом виде панели выглядят довольно технократично и «бесчеловечно». Отсюда многообразный дизайн крыш, который должен имитировать традиционные строительные материалы, такие как дерево и камень. Компания Sistine Solar производит солнечные панели в виде черепицы, кирпичной кладки и даже мха. Итальянцы из фирмы Dyaqua решили сконцентрироваться на производстве покрытий для исторически ценных зданий: их панели имитируют деревянный брус, камень, старую черепицу.

Подход Tesla более широкий: она работает с энергией в трех аспектах – производство, накопление и транспорт. Черепица для крыш в содружестве с аккумуляторами нового поколения Power 2 полностью реализует задумку Мастер-плана Два от Илона Маска: согласно ему здание полностью переводится в режим работы на солнечной энергии.

Новинки Tesla пока доступны только американцам, но уже готовятся расширить ареал своего применения и начать движение на экспорт. Как это изменит реальный мир и экономику – покажет время. Все перечисленные технологически инновации при условии объедения способны кардинально влиять на развитие оконной индустрии и снижение потребления обычных источников энергии, что приведет к энергетической революции во всем мире.

Конечно, это процесс не одного дня. Сегодня продукты рынка солнечной энергетики все еще являются роскошью для рядового покупателя. Причиной тому, сравнительно высокая стоимость.

Источник

В Австралии создали солнечные батареи, которые встроены прямо в оконные стекла

Полупрозрачные солнечные элементы, которые можно встроить в оконное стекло, могут трансформировать архитектуру, городское планирование и производство электроэнергии. Австралийские ученые, создавшие такое изобретение, опубликовали его данные в Nano Energy.

Исследователи преуспели в производстве солнечных батарей на основе перовскита следующего поколения, которые генерируют электричество и пропускают свет. Сейчас они изучают, как новая технология может быть встроена в коммерческие продукты с Viridian Glass — крупнейшим производителем стекла в Австралии.

Эта технология превратит окна в активные генераторы энергии, потенциально революционизируя дизайн здания. Исследователи говорят, что 2 м² солнечного окна будут генерировать примерно столько же электроэнергии, сколько стандартная солнечная панель на крыше.

Идея полупрозрачных солнечных элементов не нова, но предыдущие проекты провалились, потому что они были очень дорогими, нестабильными или неэффективными. Австралийцы изобрели другой подход.

Они использовали органический полупроводник, который можно превратить в полимер, и использовали его для замены обычно используемого компонента солнечного элемента (известного как Spiro-OMeTAD), который демонстрирует очень низкую стабильность, поскольку создает бесполезное водянистое покрытие. Заменитель дал удивительные результаты.

«Эффективность преобразования солнечной энергии на крыше составляет от 15 до 20%. Полупрозрачные ячейки имеют эффективность преобразования 17%, при этом пропуская более 10% входящего света, поэтому они находятся прямо в зоне получения ультрафиолета. Я давно мечтал иметь окна, которые генерируют электричество, и теперь это становится реальностью. Мы будем стремиться разработать крупномасштабный процесс производства стекла, который можно легко перенести в промышленность, чтобы производители могли легко освоить эту технологию».

Яцек Ясениак, Центр передовых технологий ARC в науке об экситонах (Exciton Science) и Университет Монаш.

Солнечные окна станут благом для владельцев зданий и жителей, и принесут новые проблемы и возможности для архитекторов, строителей, инженеров и проектировщиков. Потому что так получается компромисс. Солнечные элементы можно сделать более или менее прозрачными. Чем они прозрачнее, тем меньше вырабатывается электричества, поэтому архитекторам это нужно учитывать.

Он добавил, что солнечные окна, окрашенные в той же степени, что и нынешние коммерческие окна, будут генерировать около 140 Вт электроэнергии на м². Первое применение, скорее всего, будет в многоэтажных домах. Потому что большие окна, установленные в высотных зданиях, дороги в изготовлении. Дополнительные затраты на включение в них полупрозрачных солнечных элементов будут незначительными.

Но даже с дополнительными затратами здание получает электричество бесплатно. До сих пор каждое здание проектировалось исходя из предположения, что окна в основном пассивны. Теперь они будут активно производить электричество. Планировщикам и дизайнерам, возможно, придется даже пересмотреть то, как они размещают здания на площадках, чтобы оптимизировать ловлю стенами солнца.

Сейчас исследователи тестируют тандемное устройство, где будут использоваться солнечные элементы на основе перовскита в качестве нижнего слоя и органические солнечные элементы в качестве верхнего.

Что касается того, когда на рынке появятся первые коммерческие полупрозрачные солнечные элементы, это будет зависеть от того, насколько успешным будет масштабирование технологии. Разработка таких солнечных окон приведет к новым стеклянным инновациям и технологиям в будущем.

Источник

Прозрачная энергия: превращение окон в солнечные панели

Последнее время то и дело говорят о зеленой энергии, возобновляемых источниках оной, а также о методах ее получения, хранения и использования. И это вполне логично, ведь население планеты неустанно растет, а запасы ископаемых источников энергии стремительно иссякают. Рано или поздно может наступить такой момент, когда вся энергия, используемая людьми, будет вырабатываться солнцем, ветром и т.д. Посему многие исследователи занимаются совершенствованием существующих и созданием новых методик сбора зеленой энергии. Сегодня мы познакомимся с исследованием, в котором ученые из Мичиганского университета разработали прозрачные (точнее полупрозрачные) солнечные панели. Из чего была создана данная технология, каков принцип ее работы, и смогут ли небоскребы стать эффективными сборщиками солнечной энергии? На эти вопросы мы найдем ответы в докладе ученых. Поехали.

Основа исследования

Солнечные панели когда-то были достаточно большой редкостью, но сейчас, благо дело, их доступность и популярность сильно возросли. Недавно я проходил мимо одного жилого дома в своем городе и заметил, что его глухие стены и крыша полностью покрыты солнечными панелями. Это вызвало у меня в равной степени удивление, восхищение и море вопросов касательно эффективности, экономической выгоды и прочего. Тем не менее этот эмпирический пример отлично показывает одну особенность — панели были установлены там, где они не будут мешать (т.е. не на окнах).

Конечно, существуют целые поля солнечных панелей, занимающие сотни квадратных метров (а то и больше), но в густонаселенных и, следовательно, густозастроенных городах слишком мало свободного пространства для такого метода установки. Кто-то скажет: «если бы сильно хотели зеленую энергию и солнечные панели, то и место нашлось бы». Согласен, но реальность пока иная. Лишнего пространства между высотками может и не очень много, но вот чего много, так это окон, которые сами могли бы стать сборщиками солнечной энергии.

На данный момент уже существует несколько разработок в области полупрозрачных солнечных панелей, эффективность которых достигает 7%. В их разработке важную роль играют органические полупроводники. По сравнению с неорганическими полупроводниками, узкие экситонные* полосы внутри органических полупроводников открывают новые возможности в области органических фотоэлектрических элементов (далее OPV от organic photovoltaics), так как многие органические соединения избирательно поглощают свет за пределами видимого диапазона длин волн.

Экситон* — электронное возбуждение в полупроводнике, диэлектрике или металле, перемещающееся по кристаллу, но не связанное с переносом электрического заряда и массы.

Эффективность полупрозрачных фотоэлектрических элементов (ST-OPV) в 7% может радовать ученых и людей, понимающих сложность достижения такого показателя у столь нестандартной технологии, но с точки зрения экономической выгоды это слишком мало. Кроме того, лишь небольшая доля из разработанных ST-OPV достигает видимой прозрачности в ∼50%, что критично для многих приложений.

В результате для создания ST-OPV необходимо найти баланс между эффективностью сбора энергии и достаточным уровнем прозрачности, что не есть простая задача. Ученые также добавляют, что многие уже созданные ST-OPV имеют весьма неэстетичный внешний вид (оттенок стекла), что также никак не способствует популяризации данной технологии.

На сегодняшний день эффективные ST-OPV нейтрального цвета в основном сосредоточены на использовании материалов с сильным поглощением в ближней инфракрасной области (NIR), включающих структуры многопереходных устройств для минимизации потерь на термализацию, просветляющих покрытий (ARC) или апериодических диэлектрических отражателей (ADR) для увеличения поглощения.

В рассматриваемом нами сегодня труде ученые описывают свой вариант ST-OPV, который достигает PCE = 10.8 ± 0.6% и APT = 45.7 ± 2.1%, что приводит к LUE = 5.0 ± 0.3.

PCE* — эффективность преобразования энергии (power conversion efficiency);
APT* — средняя светопропускная способность (average photopic transmission);
LUE* — эффективность использования света (light-utilization efficiency).

В устройстве используется NFA молекула NFA (нефулереновый акцептор) с высоким поглощением в ближнем ИК-диапазоне, для синтеза которой требуется всего несколько шагов. Несмотря на то, что NFA имеют частично ковалентно конденсированные кольцевые структуры (а не жесткие и полностью конденсированные), в них наблюдались сильные межмолекулярные π – π взаимодействия и плотная упаковка молекул ().


Изображение №1

Комбинация материалов, поглощающих свет в ближнем ИК-диапазоне, выводных (выход фотонов из светодиода после генерации) структур (OC от outcoupling) на выходной поверхности и прозрачных электродов позволила достичь того самого компромисса между эффективностью, прозрачностью и эстетичностью.

Нейтральный по цвету ST-OPV с использованием прозрачного анода из оксида индия-олова (ITO от indium tin oxide) показал PCE = 8.1 ± 0.3%, APT = 43.3 ± 1.5% и LUE = 3.5 ± 0.1%. Показатели света, проходящего через устройство, были таковыми: коэффициент цветопередачи (CRI) = 86; коррелированная цветовая температура (CCT) = 4143 K; хроматические координаты — (0.38, 0.39).

Результаты исследования

На изображении показаны молекулярные структуры трех исследованных NFA, один из которых (а именно SBT-FIC) продемонстрировал полностью слившуюся молекулярную основу. Два других NFA (A078 и A134) с частично сплавленными ядрами являются изомерами SBT-FIC, содержащими четыре тиофена, два циклопентадиена и одно бензольное кольцо.

Одним из основных отличий между тремя NFA является сложность синтеза. На изготовление SBT-FIC требуется 10 этапов синтеза, а для создания A078 и A134 — всего от 4 до 6 этапов. В дополнение к этому, A078 и A134 привлекательны еще и достаточно большим выходом, а также менее токсичными и более дешевыми материалами для синтеза.

Спектры поглощения NFA в УФ-видимом диапазоне показаны на и . Удивительно, но тонкие пленки A078 и A134 демонстрируют значительные батохромные сдвиги*

135 нм по сравнению с SBT-FIC с пиком поглощения при λmax = 900 нм.

Батохромный сдвиг* — смещение спектральной полосы в длинноволновую область под влиянием заместителей или изменений среды.

Молекулярная орбиталь* — математическая функция, описывающая волновое поведение электронов в молекуле.

ВЗМО (высшая занятая молекулярная орбиталь) — орбиталь, которая среди заполненных в основном состоянии имеет наибольшую энергию.

НВМО (низшая вакантная молекулярная орбиталь) — полностью или частично вакантная молекулярная орбиталь с наименьшей энергией среди всех заполненных.

A078 и A134 демонстрируют более низкую ВЗМО-НВМО запрещенную зону (∼1.40 эВ), чем SBT-FIC (∼1.65 эВ), что согласуется с оптическими измерениями.

Далее NFA, смешанные с PCE-10, был использован в OPV со структурой ITO / ZnO (30 нм) / активный слой (∼100 нм) / MoO3 (20 нм) / Ag (100 нм).


Изображение №2

На графике показаны характеристики плотности тока и напряжения вышеописанных NFA+PCE-10.

В устройстве на базе A078 были достигнуты следующие показатели: PCE = 13.0 ± 0.4%, VOC = 0.75 ± 0.01 В, JSC = 24.8 ± 0.7 мА/см 2 и FF = 0.70 ± 0.04.

Устройство OPV на основе A134 показало: PCE = 7.6 ± 0.2% с VOC = 0.75 ± 0.01 В, JSC = 16.7 ± 0.5 мА/см 2 и FF = 0.61 ± 0.03.

Для устройства PCE-10: SBT-FIC показатели были такими: PCE = 7.8 ± 0.3% с VOC = 0.70 ± 0.01 В, JSC = 17.2 ± 0.7 мА/см 2 и FF = 0.65 ± 0.02.

Стоит отметить, что добавка 1-фенилнаталена (PN) приводит к значительному повышению эффективности устройств A078 и A134 по сравнению с SBT-FIC, что связано с улучшенной молекулярной упаковкой A078 и A134, а также более благоприятной ориентацией молекул в смеси. Также видно, что устройство PCE-10:A134 показывает более низкий PCE по сравнению с OPV PCE-10:A078. Это связано с кристалличностью A134, что приводит к его более низкой растворимости.

График показывает спектры внешней квантовой эффективности* (EQE) различных вариантов устройства.

Квантовая эффективность* — отношение числа фотонов, поглощение которых вызвало образование квазичастиц, к общему числу поглощенных фотонов.

200 нм, которое обеспечивает охват солнечного спектра дальше в NIR.

Красное смещение* — явление, когда увеличивается длина волны излучения (свет становится более красным, например), а частота и энергия уменьшаются.

EQE A078 OPV достигает 80%, между λ = 700 и 900 нм, оставляя окно прозрачности между видимыми длинами волн от 400 до 650 нм.


Изображение №3

На графиках показаны профили различных устройств на базе чистых пленок NFA и смеси PCE-10:NFA с/без добавления 1-фенилнаталена.

При добавлении 1-фенилнаталена показатель поглощения пленки PCE-10:NFA практически не меняется. А вот в смесях PCE-10:A078 и PCE-10:A134 обнаружен новый ярко выраженный пик агрегации около 900 нм. Это указывает на то, что добавка 1-фенилнаталена усиливает межмолекулярные π – π взаимодействия на частично связанных акцепторах, а не на полимерном доноре.

Далее были изучены морфологические свойства разных вариантов устройства.

A078 демонстрирует широкий (100) пик дифракции при 0.31 Å −1 с длиной ламеллярной когерентности Lc = 7.5 нм. В случае A134 пик дифракции был более узким и острым при 0.36 Å −1 с более высоким значением Lc = 15 нм. Из этого следует, что у A134 более высокая упорядоченность, чем у A078, что объясняется заменой объемной боковой цепи молекулы п-гексилфенила компактными линейными алкильными цепями.

SBT-FIC в свою очередь показывает дифракционный пик при 0.34 Å −1 с наименьшей длиной ламеллярной когерентности Lc = 3.7 нм из-за его аморфной природы.

За счет добавления 1-фенилнаталена дифракционные пики (010) PCE-10:A078 и PCE-10:A134 (3E) при 1.79 и 1.82 Å −1 (из-за NFA) смещены и показывают увеличенную длину когерентности (24 против 52 Å для A078) и (30 против 63 Å для A134).

А вот внесение добавок в PCE-10 никак не влияет на значение когерентности. Это подтверждает, что морфологические отличия между вариантами устройства происходят от NFA, а не от донора.

Кроме того, при использовании 1-фенилнаталена была обнаружена зависимость от ориентации молекул (параллельная или перпендикулярная). Для PCE-10:A078 отношение «параллельная/перпендикулярная» увеличивается с 2.37 до 3.64 (3D). Ввиду того, что параллельная ориентация молекул является идеальной для переноса заряда, становится очевидным, почему именно устройство A078 обладает столь высокой эффективностью (по сравнению с другими вариантами).

Ввиду этих данных именно A078 был использован в исследуемых полупрозрачных фотоэлектрических элементах (ST-OPV), структура которых выглядела следующим образом: ITO / ZnO (30 нм) / PCE-10:A078 (95 нм) / MoO3 (20 нм) / Ag (16 нм).


Изображение №4

Полученный ST-OPV показал LUE = 2.8 ± 0.1%, PCE = 11.0 ± 0.7% и APT = 25.0 ± 1.3%. Однако, несмотря на неплохой показатель PCE > 10%, применять данное устройство в архитектуре нельзя, так как там требуется, чтобы средняя светопропускная способность APT была

Решить эту проблему ученые смогли за счет специально разработанной структуры для управления оптическими свойствами устройства, позволяющей достичь максимального пропускания в видимом диапазоне и максимального отражения в ближнем ИК-диапазоне.

На анод из серебра было нанесено оптическое OC-покрытие, состоящее из четырех слоев: CBP (C36H24N2; толщина слоя 35 нм, коэффициент преломления 1.90) / MgF2 (100 нм, 1.38) / CBP (70 нм) / MgF2 (45 нм). А на дистальную поверхность стеклянной подложки наносили ARC (слой просветляющего материала), состоящий из бислоя MgF2 (120 нм) и SiO2 (130 нм) с достаточно низким коэффициентом преломления 1.12.

ST-OPV с OC и ARC продемонстрировал увеличение средней светопропускной способности (APT) с 25.0 ± 1.3% до 45.7 ± 2.1%, что является улучшением почти на 80% по сравнению с устройством без дополнительных слоев (т.е. без OC и ARC). Значение эффективности преобразования энергии (PCE) практически не изменилось (). Наблюдалось лишь незначительное уменьшение плотности тока (JSC = 20.4 ± 0.8 против 20.9 ± 1.2 мА/см 2 ). При использовании данной конфигурации устройства эффективность использования света составила LUE = 5.0 ± 0.3%. Данный показатель, по заявлению ученых, является самым высоким среди имеющихся на данный момент ST-OPV устройств.

Основные показатели разработанного устройства многообещающие, осталось изучить его внешний вид, что было сделано посредством смоделированного солнечного света (AM1.5G).

Свет, прошедший сквозь устройство с ОС и ARC покрытием, имел хроматические координаты (0.33, 0.39) и CCT = 5585 K. Тем временем, высокая отражательная способность ультратонкого катода из серебра при λ> 600 нм придает устройству зеленый оттенок. В отличие от Ag, ITO имеет более высокую прозрачность с плоским спектром пропускания в видимой области. Если использовать катод и анод ITO, то в результате можно получить более нейтральный оттенок.


Изображение №5

На графиках и фото выше показаны спектральные характеристики плотности тока, напряжения и EQE устройства ST-OPV на основе ITO со следующей структурой: MgF2 (120 нм) / стекло ITO / ZnO (30 нм) / PCE-10:A078 (105 нм) / MoO3 (20 нм) / напыление ITO (140 нм) / MgF2 (145 нм) / MoO3 (60 нм) / MgF2 (190 нм) / MoO3 (105 нм).

По сравнению с ST-OPV на основе Ag, устройство на основе ITO показывает различия в FF и VOC из-за его более высокой работы выхода* и поверхностного сопротивления (

Работа выхода* — энергия, которую должен получить электрон для его удаления из объема твердого тела.

Но самые значимые отличия наблюдались в показателях JSC и PCE. Поскольку устройство становится все более прозрачным, отражение от ITO анода в тонкую активную область уменьшается, устраняя двойной проход фотонов. Чтобы свести к минимуму потерю фотонов низкой энергии, OC покрытие было специально разработано с максимальным пропусканием в видимой области спектра и более высокой отражающей способностью на более длинных волнах. Таким образом, устройство с OC покрытием имеет на 15% более высокие значения JSC и PCE по сравнению с ITO устройством без покрытия, хотя видимая прозрачность при этом практически не меняется.

ITO устройство с ОС покрытием демонстрирует LUE = 3.5 ± 0.1%, PCE = 8.1 ± 0.3% и APT = 43.3 ± 1.5%, и имеет почти нейтральный оттенок. Также анализ трестируемого устройства показал, что оно передает цвет объекта за ним (5D).

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог

В городах полно домов (простите за очевидное), следовательно, множество окон. Использование их в качестве площадки для сбора солнечной энергии является весьма разумной, но сложной в реализации идеей. С одной стороны необходимо собирать максимум энергии, с другой — суть окна в том, что оно прозрачное.

В данном труде ученые смогли продемонстрировать рабочий прототип устройства полупрозрачного фотоэлектрического элемента с PCE = 10.8 ± 0.6%, APT = 45.7 ± 2.1% и LUE = 5.0 ± 0.3%. Другим словами, эффективность устройства составила 10.8%, а его прозрачность 45.8%. Основным достоинством данной разработки является баланс между этими показателями.

На данный момент эффективность использования света составляет порядка 5%, что уже хорошо, ведь предшественники могли выдать максимум 2-3%. Однако ученые намерены продолжить свой труд и достичь 7%. Еще одной задачей, которую они перед собой поставили, является продление срока службы устройства до 10 лет. Долговечные, эффективные и эстетически красивые фотоэлементы смогут превратить обычное офисное здание в своего рода солнечную электростанцию.

Хотелось бы сказать, что подобные исследования своевременны, однако это не так. Такими разработками, особенно столь массово, как сейчас, стоило заниматься намного раньше, не дожидаясь момента, когда предотвращение экологической и энергетической катастрофы превратится в разбор последствий. В любом случае подобные начинания, хоть и с опозданием, имеют огромную важность не только для будущего человечества, но и для будущего нашей планеты.

Благодарю за внимание, оставайтесь любопытствующими и отличных всем выходных, ребята! 🙂

Немного рекламы

Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле в дата-центре Equinix Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 — 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB — от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?

Источник

Оцените статью