Солнечные фотоэлементы для солнечных батарей

Солнечные элементы и их виды

Солнечные элементы – это части батарей, которые генерируют электрический ток. Появились они сравнительно недавно, в XIX веке, и только сейчас их начали использовать в качестве недорогого, но эффективного способа добычи энергоресурсов. Принцип работы солнечных батарей довольно прост. Ими можно оснастить жилое или нежилое помещения. Существуют различные виды данных элементов питания. Разберем их более подробно.

Элементы солнечных батарей

Зачастую энергия солнечной панели используется для дома и его нужд. Вырабатываемого электрического тока достаточно для двухэлементной бойлерной системы, холодильника, телевизора и прочих бытовых приборов.

Солнечные лучи – это экологически чистое «топливо». Ведь в процессе работы модуль солнечной батареи не выделяет обилие вредных выхлопов, углекислый газ и не расходует невосполнимые природные ископаемые.

Стоит понимать, что солнечные батареи складываются из множества модулей. И то, что мы видим на крыше зданий или на стенах, является только частью системы.

Из чего состоит солнечная система электроснабжения:

  1. Солнечные ячейки, складывающиеся в панели. Это те видимые нам батареи, которые крепятся на крышу или стены.
  2. Аккумулятор. Данный элемент в системе необходим для накапливания лишней энергии, например, в ясный день. В пасмурную погоду, когда батареи работают не на полную мощность, ток на бытовые нужды берется из АКБ.
  3. Контроллеррегулирует заряд аккумулятора, подсказывает владельцу системы, что заряда недостаточно или слишком много. Излишнее напряжение губительно для аккумулятора.
  4. Преобразователь постоянного тока в переменный (инвертор) необходим для работоспособности бытовых приборов. Ведь не все из них способны работать на постоянном потоке заряженных частиц.
Читайте также:  Электродвигатели для солнечных батарей

Подключая солнечные модули, необходимо уже изначально определиться с местом их расположения, видом, количеством бытовой техники, необходимостью контролера АБК.

Стоит понимать, что такая системы является наборной, и вы с легкостью можете установить еще не один солнечный модуль.

Принцип работы солнечных батарей

Человечество научилось получать энергию из ископаемых, потоков воды и порывов ветра, дошли и до применения световых лучей. Существуют даже солнечные модули, которые поглощают невидимый инфракрасный спектр и работают ночью. Всепогодные батареи эффективны в пасмурную погоду, туман, дождь.

Принцип работы любой батареи – преобразование лучей солнца в электрический импульс.

Зачастую солнечные модули работают на кристаллах кремния, и этому есть объяснение. Данный металл чувствителен к воздействию лучей, он недорог в добыче, а КПД батарей составляет 17-25%. Кристалл кремния при попадании на него солнечных лучей образует направленное движение электронов. При средней площади батареи 1-1,5 м² можно достичь на выходе напряжение в 250 Вт.

В настоящее время применяется не только кремний, но и соединения селена, меди, иридия и полимеров. Но широкого распространения они не получили, даже несмотря на КПД в 30-50%. Все потому, что они очень дороги. Для электрификации обычного дачного или загородного дома отлично подойдет кремниевая фотоэлектрическая панель.

Виды солнечных батарей

Такие аккумуляторы постоянно видоизменяются. Эта область модифицируется и подвергается инновационным решениям.

Именно поэтому существует много видов солнечных панелей.

Монокристаллические

Данные батареи обладают хорошим КПД. Каждая ячейка являет собой отдельный кристалл кремния. Поверхность батареи слегка выпуклая, насыщенного синего цвета. Фотоэлектрические панели этого типа имеют самую высокую цену, которая обуславливается сложностью технологии. Ведь все кристаллы развернуты в одном направлении.

Необходимо будет дополнительное оборудование, которое будет разворачивать комплекс панелей в зависимости от положения Солнца на горизонте. Из-за необходимости прямых лучей такие элементы устанавливают на хорошо освещенных участках или возвышенностях.

Средний срок эксплуатации – 25 лет.

Поликристаллические (multi-Si)

Солнечные модули данного вида обладают неравномерно насыщенным синим цветом из-за разной направленности кристаллов кремния. Они дешевле монокристаллических аналогов, обладают хорошим КПД, их не нужно разворачивать к солнцу. В пасмурную погоду или облачность они показывают лучшие результаты, нежели вышеописанный вид.

Средний срок эксплуатации без потери качеств – 15-20 лет.

Аморфные (полимерные солнечные батареи)

В данном случае используются не цельные кристаллы, а гидрид кремния. Его наносят на твердую или гибкую подложку. Преимуществами является низкая стоимость. К тому же, полимерный солнечный элемент можно нанести на любую гибкую подложку. Значит, вы можете по максимуму использовать скат крыши, неровные поверхности.

Фотоэлектрическая структура полимерного кремния позволяет поглощать свет даже рассеянный. Аморфные солнечные батареи выгодно ставить в условиях севера, короткого светового дня, в областях с агрессивными атмосферными условиями.

Существуют и другие, более редкие разновидности.

Органические

Эти солнечные батареи только изучаются. Активные разработки появились в последнем десятилетии, поэтому достоверных данных насчет гарантированного срока эксплуатации у производителей нет. Солнечный элемент использует органическую основу – соединения углерода.

Некоторые виды солнечных панелей данного строения обладают хорошим КПД, они пластичны, экологичны, просты в утилизации и значительно дешевле кремниевых аналогов.

Безкремниевые

Изготовлены на основе редких металлов. Вместо кремния применяются соединения теллура, селена, меди, индия. Данные металлы редкие и дорогие, поэтому стоимость батарей очень высокая. Однако панели этого типа могут работать в широком температурном диапазоне.

Сравнение КПД батарей разного типа

Разновидность панели Максимальное значение КПД
Монокристаллические 20-25%
Поликристаллические 15-20%
Аморфные 6-7% (в некоторых случаях до 15%)
Органические 12-15%
На основе редких металлов 10-20%, в зависимости от применяемого металла. Некоторые панели могут выдавать до 40%

Как подобрать солнечную панель?

Как видите, типы солнечных батарей различны.

Подбирать устройство необходимо, исходя из многих факторов:

  • степени освещенности территории;
  • климата;
  • площади помещения;
  • количества бытовых приборов;
  • финансового бюджета;
  • площади крыши;
  • возможности пользования стационарными электросетями;
  • отдаленности от населенного пункта.

Естественно, если вы собираетесь поставить солнечные панели на дачу, где проводите время только летом, стоит побеспокоиться о безопасности вашего имущества.

Если у вас длинный световой день, хорошо освещаемая территория, то отдайте предпочтение моно- и поликристаллическим моделям. В холодных широтах приобретайте поликристаллические или полимерные фотоэлементы.

Виды подключения

Вы уже купили фотоэлементы для солнечных батарей, АКБ и все остальные составляющие. Осталось определиться с типом электроснабжения вашего жилища. Они бывают:

  1. Автономные. В данном случае ваш дом питается только от солнечных батарей и никак не связан с общей электрификацией.
  2. Смежные. Панели подключаются в общую сеть. Если бытовые приборы потребляют небольшое количество энергии, то стационарная сети не используется, ток берется из аккумулятора. В случае превышения потребностей электричество расходуется и из общей сети. Стоит учитывать, что без сети сами по себе батареи работать не будут.
  3. Комбинированные похожи на смежные. Но в данном случае излишек электроэнергии, получаемый панелями, идет не в аккумулятор, а в общую сеть.

Какую систему и панели выбрать, решать только вам. Перед покупкой проконсультируйтесь у нескольких специалистов, ведь такие системы приобретаются не на один год. При правильном подключении они будут радовать вас долгое время.

Источник

Виды элементов солнечных батарей, их особенности и нюансы использования

В энергосистемах разного уровня и направленности (как промышленных, так и частных) возрастает популярность солнечных батарей. Преимущества их использования понятны и неоспоримы, что прежде всего касается экономичности их работы.

Солнечные источники энергии не зависят от центральных систем сбережения энергии, способствуют значительному снижению затрат на коммунальные расходы. Кроме того, они просты в эксплуатации и абсолютно экологичны и безопасны. В настоящее время существует несколько видов солнечных элементов, каждый из которых отличается особенностями производства, способу модификации солнечной энергии в электрическую.

Особенности работы солнечных батарей. Фотоэффект

Принцип работы этих элементов основан на процессе трансформации энергии солнечных лучей в электрическую энергию. Внешне это выглядит следующим образом: солнечные лучи падают на пластину, в результате чего указатель индикатора показывает величину электрического тока, получаемого в результате. Это явление можно объяснить с точки зрения физики. Оно носит название «фотоэффект» и его сущность заключается в способности некоторых видов материалов вырабатывать электричество от солнца.

Принцип действия фотоэффекта основан на функционировании электронов. Электроны, находящиеся в составе некоторых веществ (среди них, например, кремний), осуществляют поглощение потока солнечных лучей. Результат: создание и получение электронами импульса, который способствует их выталкиванию из орбит. В итоге происходит создание эффекта постоянного фототока, который представляет собой поток движущихся в одном направлении электронов.

Подобное описание является самым простым объяснением сложного процесса работы солнечных элементов энергии. Дело в том, что появление фотоэффекта возможно только в том случае, если обеспечено объединение двух типов полупроводников. Полупроводники первого типа отличаются нехваткой электронов, а второго типа – их избыточным количеством. При их объединении получаются солнечные батареи, имеющие в конструкции два слоя, представляющего собой эти полупроводники.

Фотоэлементы осуществляют свое взаимодействие по следующей схеме. Расположенный на верхних позициях структуры n-проводник подвергается прямому воздействию солнечных лучей, результатом которого является выбрасывание электронов из орбит. Вследствие создания добавочного энергетического импульса происходит переход частиц в проводник р типа. Результат: формирование направленного потока движения частиц. Для сбрасывания полученного фототока на пластины из полупроводников устанавливают нагрузку и тонкие проводниковые элементы.

Чаще всего в роли полупроводников обоих типов в составе солнечных элементов используют кремний с различными добавками. Дело в том, что этот химических элемент обладает массой преимуществ, среди которых простота в добыче и обработке, дешевизна, минимизация затрат и подходящие физические характеристики. Среди недостатков этого элемента в качестве основы для создания полупроводников является небольшая продуктивность, которая редко достигает более 20 % преобразования энергии. Некоторые химические вещества обладают более высоким показателем КПД при преобразовании солнечной энергии в электричество, но их использование нерентабельно из-за сложностей добычи и промышленной обработки.

Кремний лежит в основе производства солнечных батарей нескольких типов: поликристаллических, монокристаллических и тонких пленочных. Каждый тип отличается особым набором свойств и определяет основную отрасль применения.

Поликремний в составе фотоэлементов

Поликристаллические ячейки кремния отличаются неоднородной структурой темного цвета и имеют квадратную форму. В поликремнии содержится небольшой процент примесей.

Продуктивность работы поликремниевых ячеек, которая составляет около 17 %, ниже, чем монокремниевых (более 20%). Однако по ряду причин, включающих легкость выращивания поликремниевых кристаллов, минимум затрат на данный процесс, поликремниевые батареи намного дешевле.

Неравномерная структура поверхности этих ячеек определяет неравномерное поглощение солнечных лучей. Это способствует, с одной стороны, к большим потерям энергии, а с другой – снижению степени зависимости от траектории движения Солнца.

Монокремниевые фотоэлементы

Монокристаллический кремний, а точнее фотоэлементы на его основе, легко узнаваемы. Они отличаются ярким синим цветом, ровной и однородной поверхностью. Производство таких ячеек осуществляется из монокристаллов кремния, не имеющего примесей. Благодаря этому, такие ячейки отличаются высокими показателями качества и наиболее продуктивны. Их форма: квадрат со срезанными углами.

Характеристики монокремниевых фотоэлементов

Они отличаются самым высоким КПД при трансформации энергии. Причина заключается в однородности их состава, благодаря которой свет поглощается максимально равномерно и преобразуется в фотопоток. Точные показатели энергетической эффективности этих элементов зависят напрямую от свойств кристалла, процентного содержания в нем примесей, а также качества технологий их выращивания.

Монокристаллические солнечные батареи отличаются следующими качествами:

  • независимость равномерности выходных свойств от погоды. Даже высокий уровень облачности и холодное время года (при отрицательных температурах) не влияет на КПД таких батарей.
  • гибкость, предотвращающая поломки вследствие физического воздействия.

Стоимость монокремниевых батарей превышает цену на поликристаллические.

Фотоэлементы на основе аморфного кремния

Их наиболее распространенное название «гибкие панели». Они отличаются гибкой структурой из тонких пленок. Их производство основано на использовании аморфного кремния или теллурида кремния. В настоящее время активно ведутся разработки по применению в качестве основного вещества органических компонентов.

Продуктивность гибких панелей зависит от типа полупроводника. Кремниевые панели дают 10% КПД, наиболее современные компоненты – 15-20 %.

Характеристики гибких тонкопленочных панелей:

  • универсальность монтажа (возможен на любых формах);
  • высокий уровень генерирования энергии при рассеянном падении лучей;
  • маленькая толщина, достигающая около 1 мкм;
  • низкая себестоимость и совокупная цена;
  • высокие показатели эффективности при использовании в мощных системах (свыше 10 кВт).

Солнечные батареи тонкопленочного типа находят широкое применение в регионах с преобладанием облачной погоды, а также в жарких регионах.

К минусам этих элементов можно отнести их габариты, превышающие при аналогичном уровне мощности размеры кристаллических в два раза.

Транзисторные фотоэлементы

Фотоэлементы в составе солнечных батарей могут быть изготовлены из вышедших из эксплуатации транзисторов. Их можно сделать даже самостоятельно, в домашних условиях. Для этого потребуются транзисторы из полупроводников, с которых нужно снять крышки (для открытия переходов полупроводников). КПД таких фотоэлементов минимален, но есть возможность их объединения друг с другом в блоки, что будет способствовать в конечном итоге увеличению выходных параметров. Такие батареи подойдут для зарядки светильников, часов и маленьких аккумуляторов.

Источник

Оцените статью