Так ли экологичны солнечные батареи?
Дата публикации: 28 апреля 2014
Северная Ассоциация США по возобновляемым источникам энергии, в своей публикации «Солнечная энергия», опубликованной в 2008-м году, пишет:
«Из всех доступных возобновляемых источников энергии именно солнечная энергия и солнечные батареи наносят минимальный ущерб окружающей среде. Электричество, произведенное при помощи солнечных батарей, не оказывает вредного воздействия на воздушные массы. И никак не загрязняет ни поверхностные, ни подземные воды, не истощает природные ресурсы и не несет опасности, как для животного мира, так и здоровья человека.
Единственный реально опасный эффект данного типа энергии связан с получением некоторого количества токсических веществ и химикатов, например, кадмия и мышьяка, которые используются при производстве солнечных батарей. Но, по большому счету, и эти негативные эффекты минимальны по своему объёму, если есть продуманная политика в плане их повторного использования и надлежащей утилизации.
Будущее
В свою очередь Кен Звейбл, Директор Института анализа солнечной Энергии в Университете Джорджия, в Вашингтоне, а также Джеймс Мейсон, Директор компании про производству солнечных батарей, и Василис Фенакис, Главный Инженер по исследовательской работе в Национальной Лаборатории в Брукхайвене, в своей совместной статье от 2007-го в журнале «Научная Америка» пишут о планах на будущее.
«Мы полагаем, что примерно к 2050-му году технологии солнечных батарей позволят производить почти 3 000 ГИГАВАТТ электрической энергии, иными словами МИЛЛИАРДЫ ватт. Около 30 000 квадратных миль рядов солнечных батарей должны быть установлены верх к солнцу на фиксируемых подставках. Да, эти площади могут казаться просто невероятными. Но уже установленные линии батарей показывают, что свободной земли, необходимой для производства каждого гигаватт – часа солнечной энергии на Юго-Востоке США требуется все равно меньше, чем при производстве этого же количества энергии на традиционных угольных электростанциях.
Исследования, проведённые Лабораторией Энергетики в Коло, показывают, что более чем достаточно земельных ресурсов на Юго-Востоке страны. Нет необходимости затрагивать чувствительные к проникновению машин и людей территории. Также нет необходимости как-то мешать в этом плане землям населенных пунктов или вообще углубляться в трудные территории. Благотворная природа самой солнечной энергии, ее экологичность, включая разумное потребление воды, сводит озабоченность экологическими эффектами батарей к минимуму»
В 2008-м году Отделение по энергоэффективности возобновляемой солнечной энергии (EERE) на своем сайте в блоке «Почему так важна солнечная энергетика» разместило следующий материал:
«Малые электрические подстанции наносят незначительный ущерб окружающей среде, так же как и солнечные батареи. Удивительно, но так запросто производя нужную человеку электрическую энергию, солнечные батареи не загрязняют окружающую среду, не производят рискованные для фауны и флоры выбросы и отходы. Это производство энергии не требует ни жидкого, ни газообразного топлива, его не надо ни транспортировать, ни сжигать»
В свою очередь Василис Фенакис, старший научный сотрудник Центра Инженерных Наук Национальной Лаборатории в Брукхавене, в статье от 2004 года «Циркуляция теллурида кадмия и его вред в ходе производства солнечных батарей» в разделе о возобновляемой и восполняемой энергетике пишет:
«Если смотреть широким полем зрения на проблему, то риски для окружающей среды от солнечных батарей минимальны. Приблизительные выбросы в атмосферу в ходе производства составляют 0,02 грамма теллуридла кадмия на ГИГАВАТТ\час электрической энергии, произведенной за весь срок службы солнечного модуля, и это очень низкий показатель.
Широкомасштабное использование солнечных батарей не несет никакого риска для здоровья человека и живых существ. А повторная переработка модулей, что уже отслужили свой срок службы, почти полностью нивелирует озабоченность «зеленых» по поводу вредности этого вида производства электрической энергии.
Во время своей работы солнечные модули не производят загрязнения Природы, и более того, постепенно замещая традиционные виды топлива (газ, нефть, уголь) они приносят существенные выгоды окружающей среде. Теллурид кадмия в солнечных батареях на самом деле на поверку оказывается значительно более дружественен Природе, чем все остальные ныне используемые виды кадмийных батарей, включая знаменитые никель-кадмиевые.
Минусы
Однако, не все так просто в вопросе безопасности для окружающей среды со стороны огромной МАССЫ солнечных батарей.
В главе, озаглавленной «Солнечная и ветряная энергетика непродуктивна и вредна для окружающей среды» ее автор, Пол Дриссен, Доктор Наук и сотрудник Комитета по «Строительству завтрашнего дня» пишет:
«Производство 50-ти МЕГАВАТТ электрической энергии с использованием газосжигательных установок потребует примерно от 2 до 5 акров земли. Чтобы получить такое же количество энергии за счет солнечных модулей придется покрыть – внимание ! — около ТЫСЯЧИ акров земли солнечными панелями (и это еще если принимать в расчет оптимистичные цифры в получении энергии в 10 ватт на кв. метр или 5% эффективности при пиковой выработке).
Еще не меньшая проблема – это обеспечить свободный доступ грузовикам с водой для того чтобы мыть весь этот «лес» из солнечных модулей. Чтобы покрыть, например, потребности Калифорнии в энергии при помощи солнечных модулей потребуется задействовать десятки тысяч акров земель, принося их в жертву. А ведь эти прерии называют чуть ли не самым уникальными и красивыми образчиками настоящей Дикой Природы. Дикий Дикий Запад. Это один из самых величественных и красивейших ландшафтов во всей Америке, и его придется принести на алтарь солнечной энергетики вместе с животным и растительным миром этой территории.
Калифорнийская Энергетическая Комиссия в рамках общественного интереса к энергетической общедоступной исследовательской программе (PIER), Институт Исследований Электрической Энергии (EPRI) в ноябрьском отчете 2003 года под названием «Потенциальный вред для Здоровья и Окружающей среды связанный с производством и использованием солнечных батарей, доступной на сайте EPRI, написали следующее.
«Само производство солнечных батарей включает в себя использование некоторых токсичных газов, взрывоопасных летучих веществ, коррозийных жидкостей и подозрительных канцерогенных – вызывающих рак – реагентов. Магнитуда возможных негативных эффектов на здоровье человека и Природу в случае производства солнечных батарей варьируется в зависимости от используемых токсических материалов, их насыщенности, интенсивности использования, а также продолжительности их воздействия на человека в условиях производства.»
Отработанные модули
Утилизация значительных объемов отслуживших свое солнечных модулей на конкретной территории приводит к увеличению риска для здоровья людей в данной местности. А также это пагубно для местной флоры и фауны. Утечка химических реагентов из утилизируемых модулей дает вероятность заражению местной почвы и поверхностных вод.
Животный и растительный мир на этих территориях при непосредственной близости возможных утечек или случайных выбросов в атмосферу может быть подвергнут тяжелому воздействию. Утечки могут привести к взрывному росту концентрации опасных веществ вокруг производственных установок, на которых производятся модули. А это уже прямая и явная угроза здоровью работающих здесь людей.
Окружающая вода, воздух, почвы будут поглощать в себя вредные химические выбросы. Загрязненная вода отравит почву, а вдыхаемый воздух также будет частично отравлен выбросами.
Удар по живому
«Выбросы химических токсических соединений при производстве солнечных модулей ведет к ослаблению резистентности живых существ к болезням и ухудшению их фертильности, то есть способности давать здоровое полноценное потомство. Также увеличивается смертность и наблюдается замедленный рост у детей и детенышей. Интенсивность и серьезность негативного воздействия будет различаться в зависимости от количества и типа вредных веществ, высвобождаемых при производстве солнечных улавливающих модулей…»
По материалам Исследовательского Института Электрической Энергии (EPRI) 2003 год. Калифорнийская Энергетическая Комиссия.
В свою очередь Ховард Хейден, Доктор Наук, почетный Профессор в университете Физики в Коннектикуте, в книге от 2005 года «Солнечная ловушка: почему солнечная энергетика не покорила мир» пишет:
«Скопление солнечных батарей на примере местечка Барстоу, Калифорния, под кодовым обозначением «Солнечная №2», занимает 52,6 гектаров (почти 130 акров) земель и производит около 10 мегаватт электричества на максимальном выходе при пиковых значениях. Производительность достигает лишь 16%. Для таких вот установок типа «Солнечная -2», чтобы произвести такое же количество энергии, как и типичной 1000 мегаватт электростанции на обычном топливе, за год потребуется покрыть солнечными модулями 33 000 (!) гектаров земли. Или иными словами, 127 квадратных миль площади! А это уже серьезный урон окружающей среде.
Число солнечных батарей на нашей планете непрерывно растет, однако ни о каком качественном прорыве в этой области пока говорить не приходится. Возможно, когда инженеры придумают, как уменьшить площади солнечных модулей и как наладить их само очистку, когда уберут из производственной цепочки некоторые летучие опасные соединения и газы, то дело и пойдет веселее. Но пока с экологической точки зрения солнечные электростанции все же не совсем безвредны для окружающей среды.
Михаил Берсенев, по материалам зарубежных сайтов, 28 апр. 14 г.
Истощение природных ресурсов и обострившиеся экологические проблемы — главные причины для развития возобновляемых источников энергии:
Источник
Как работают солнечные батареи: принцип, устройство, материалы
Солнечные батареи считаются очень эффективным и экологически чистым источником электроэнергии. В последние десятилетия данная технология набирает популярность по всему миру, мотивируя многих людей переходить на дешевую возобновляемую энергию. Задача этого устройства заключается в преобразовании энергии световых лучей в электрический ток, который может использоваться для питания разнообразных бытовых и промышленных устройств.
Правительства многих стран выделяют колоссальные суммы бюджетных средств, спонсируя проекты, которые направлены на разработку солнечных электростанций. Некоторые города полностью используют электроэнергию, полученную от солнца. В России эти устройства часто используются для обеспечения электроэнергией загородных и частных домов в качестве отличной альтернативы услугам централизованного энергоснабжения. Стоит отметить, что принцип работы солнечных батарей для дома достаточно сложный. Далее рассмотрим подробнее, как работают солнечные батареи для дома подробно.
Немного истории
Первые попытки использования энергии солнца для получения электричества были предприняты еще в середине двадцатого века. Тогда ведущие страны мира предпринимали попытки строительства эффективных термальных электростанций. Концепция термальной электростанции подразумевает использование концентрированных солнечных лучей для нагревания воды до состояния пара, который, в свою очередь, вращал турбины электрического генератора.
Поскольку, в такой электростанции использовалось понятие трансформации энергии, их эффективность была минимальной. Современные устройства напрямую преобразуют солнечные лучи в ток благодаря понятию фотоэлектрический эффект.
Современный принцип работы солнечной батареи был открыт еще в 1839 году физиком по имени Александр Беккерель. В 1873 году был изобретен первый полупроводник, который сделал возможным реализовать принцип работы солнечной батареи на практике.
Принцип работы
Как было сказано раньше, принцип работы заключается в эффекте полупроводников. Кремний является одним из самых эффективных полупроводников, из известных человечеству на данный момент.
При нагревании фотоэлемента (верхней кремниевой пластины блока преобразователя) электроны из атомов кремния высвобождаются, после чего их захватывают атомы нижней пластины. Согласно законам физики, электроны стремятся вернуться в свое первоначальное положение. Соответственно, с нижней пластины электроны двигаются по проводникам (соединительным проводам), отдавая свою энергию на зарядку аккумуляторов и возвращаясь в верхнюю пластину.
Эффективность фотоэлементов, созданных при помощи монокристаллического метода нанесения кремния, является существенно выше, поскольку в такой ситуации кристаллы кремния имеют меньше граней, что позволяет электронам двигаться прямолинейно.
Устройство
Конструкция солнечной батареи очень проста.
Основу конструкции устройства составляют:
- корпус панели;
- блоки преобразования;
- аккумуляторы;
- дополнительные устройства.
Корпус выполняет исключительно функцию скрепления конструкции, не имея больше никакой практической пользы.
Основными элементами являются блоки преобразователей. Это и есть фотоэлемент, состоящий из материала-полупроводника, которым является кремний. Можно сказать, что состоят солнечные батареи, устройство и принцип работы которых всегда одинаковый, из каркаса и двух тонких слоев кремния, который может быть нанесен на поверхность, как монокристаллическим, так и поликристаллическим методом.
От метода нанесения кремния зависит стоимость батареи, а также ее эффективность. Если кремний наносится монокристаллическим способом, то эффективность батареи будет максимально высокой, как и стоимость.
Если говорить о том, как работает солнечная батарея, то не нужно забывать об аккумуляторах. Как правило, используется два аккумулятора. Один является основным, второй — резервным. Основной накапливает электроэнергию, сразу же направляя ее в электрическую сеть. Второй накапливает избыточную электроэнергию, после чего направляет ее в сеть, когда напряжение падает.
Среди дополнительных устройств можно выделить контроллеры, которые отвечают за распределение электроэнергии в сети и между аккумуляторами. Как правило, они работают по принципу простого реостата.
Очень важными элементами солнечной назвать диоды. Данный элемент устанавливается на каждую четвертую часть блока преобразователей, защищая конструкцию от перегрева из-за избыточного напряжения. Если диоды не установлены, то есть большая вероятность, что после первого дождя система выйдет из строя.
Как подключается
Как было сказано раньше, устройство солнечной батареи достаточно сложное. Правильная схема солнечной батареи поможет добиться максимальной эффективности. Подключать блоки преобразователей необходимо при помощи параллельно-последовательного способа, что позволит получить оптимальную мощность и максимально эффективное напряжение в электрической сети.
Разновидности солнечных батарей
Существует несколько разновидностей фотоэлементов для солнечных батарей, которые отличаются между собой строением кристаллов кремния.
Выделяют три вида фотоэлементов:
- поликристаллические;
- монокристаллические;
- аморфные.
Первый вид панелей является более дешевым, но менее эффективным, поскольку, если кремний нанесен поликристаллическим способом, то электроны не могут двигаться прямолинейно.
Монокристаллические фотоэлементы отличаются максимальным КПД, который достигает 25 %. Стоимость таких батарей выше, но для получения 1 киловатта нужна существенно меньшая площадь фотоэлементов, чем при использовании поликристаллических панелей.
Из аморфного кремния изготавливают гибкие фотоэлементы, но их КПД самый низкий и составляет 4-6 %.
Преимущества и недостатки
Основные преимущества солнечных батарей:
- солнечная энергия абсолютно бесплатная;
- позволяют получать экологически чистую электроэнергию;
- быстро окупаются;
- простая установка и принцип работы.
- большая стоимость;
- для удовлетворения потребностей небольшой семьи в электроэнергии нужна достаточно большая площадь фотоэлементов;
- эффективность существенно падает в облачную погоду.
Как добиться максимальной эффективности
При покупке солнечных батарей для дома очень важно подобрать конструкцию, которая сможет обеспечить жилище электроэнергией достаточной мощности. Считается, что эффективность солнечных батарей в пасмурную погоду составляет приблизительно 40 Вт на 1 квадратный метр за час. В действительности, в облачную погоду мощность света на уровне земли составляет приблизительно 200 Вт на квадратный метр, но 40 % солнечного света – это инфракрасное излучение, к которому солнечные батареи не восприимчивы. Также стоит учитывать, что КПД батареи редко превышает 25 %.
Иногда энергия от интенсивного солнечного света может достигать 500 Вт на квадратный метр, но при расчетах стоит учитывать минимальные показатели, что позволит сделать систему автономного электроснабжения бесперебойной.
Каждый день солнце светит в среднем по 9 часов, если брать среднегодовой показатель. За один день квадратный метр поверхности преобразователя способен выработать 1 киловатт электроэнергии. Если за сутки жильцами дома израсходуется приблизительно 20 киловатт электроэнергии, то минимальная площадь солнечных панелей должна составлять приблизительно 40 квадратных метров.
Однако, такой показатель потребления электроэнергии на практике встречается редко. Как правило, жильцы израсходуют до 10 кВТ в сутки.
Если говорить о том, работают ли солнечные батареи зимой, то стоит помнить, что в данную пору года сильно снижается длительность светового дня, но, если обеспечить систему мощными аккумуляторами, то получаемой за день энергии должно быть достаточно с учетом наличия резервного аккумулятора.
При подборе солнечной батареи очень важно обращать внимание на емкость аккумуляторов. Если нужны солнечные батареи работающие ночью, то емкость резервного аккумулятора играет ключевую роль. Также устройство должно отличаться стойкостью к частой перезарядке.
Несмотря на тот факт, что стоимость установки солнечных батарей может превысить 1 миллион рублей, затраты окупятся уже в течении нескольких лет, поскольку энергия солнца абсолютно бесплатна.
Видео
Как устроена солнечная батарея, расскажет наше видео.
Источник