Солнечные батареи ветрогенераторы монтаж

Совместная работа ветрогенератора и солнечных батарей

В этой статье я хочу поделится своим опытом по подключению и совместной работе солнечных батарей вместе с ветрогенератором через один солнечный контроллер. Чтобы ввести в курс дела начну по по порядку. Солнечные панели у меня четыре штуки на 12В по 100 ватт (400 ватт), и имеется самодельный ветрогенератор мощностью 300 ватт. Они подключены к одному контроллеру для солнечных батарей ФОТОН 100-50.

Солнечные панели соединены на 24 вольта, то есть по две панели последовательно и далее уже в параллель, напряжение холостого хода 44 вольта. Они подключены к контроллеру штатно, так же параллельно солнечным батареям включен и ветрогенератор, то есть они работают и одновременно заряжают АКБ. Ниже фотография внутренней части моей мини электростанции.

Вообще нельзя подключать ветрогенератор к солнечным контроллерам если они не имеют защиты по входному напряжению и по току. Нельзя потому что если напряжение ветрогенератора превысит максимально допустимое напряжение контроллера, то сгорят транзисторы. В обычных PWM контроллерах на 12/24 вольта максимально допустимое входное напряжение около 50 вольт. И например когда аккумуляторы уже хорошо заряжены то они не весь ток потребляют и контроллер начинает его ограничивать. Соответственно входное напряжение повышается, ветрогенератору становится легче, и он при наличие хорошего ветра начинает набирать большие обороты и напряжение повышается, и если он превысил порог то контроллер сгорает. ахА если при этом сильный ветер, как это обычно случается, то есть риск что ветряк без нагрузки пойдёт вразнос, наберёт бешеные обороты и «скинет» лопасти.

Читайте также:  Лучший генератор для ветрогенератора

В контроллер ФОТОН 100-50 есть все необходимые защиты, поэтому при подключении ветряка ничего страшного не случится, что подтверждено многочисленными видео на моём канале yutube про работу ветряка с этим контроллером. В настройках контроллера есть один из трёх режимов, в котором у меня с ним нормально работает ветрогенератор. Принцип работы этого режима такой:

Контроллер работает в режиме работы по напряжению в процентах от Uxx, и измеряет раз 1-2 секунды напряжение холостого хода ветряка, и просаживает его на 20%. Например если напряжение холостого хода ветряка 50 вольт, то контроллер подсаживает его до 32 вольта и с этой точки снимает мощность. Например если будет 32А и ток по входу 4А, то на выходе ток заряда составит 9А на АКБ 13 вольт. Если ветрогенератор раскручивается то его напряжение повышается и контроллер измеряя его повышает точку отбора мощности. И наоборот если обороты падают то и напряжение уменьшается, и контроллер понижает точку отбора мощности. С моим ветряком начало заряда с 14 вольт происходит, и на сильном ветру напряжение бывает под 60-80 вольт подскакивает.

С солнечными панелями контроллер работает также, но у них напряжение стабильное и не меняется. Поэтому если днём светит солнце то контроллер забирает энергию с панелей держа точку MPPT в пределах 36-38 вольт. И если есть ветер то пока напряжение ветрогенератора ниже этого напряжения то зарядки нет от него и работают только солнечные панели. Но как только напряжение станет выше то и ветрогенератор начинает заряжать акб. У меня ветрогенератор оптимально работает на 24-36-48в и поэтому он удачно подошёл для совместной работы с панелями и к контроллеру.

Читайте также:  Оптимальная высота ветряка ic2

Когда аккумуляторы почти заряжены и начинается ограничение по току, и контроллер переходит в режим поддержки то входное напряжение увеличивается. И если ветрогенератор оказывается мощнее чем потребление энергии то напряжение по входу повышается и начинается работа только от ветряка, а рабочее напряжение солнечных батарей становится ниже. Как это работает можно увидеть на этом видео:

Контроллер у меня уходит в защиту при 44.3 ампера, поэтому я выставил в настройках ток заряда максимальный 44А. Если ток заряда окажется больше то контроллер не уходит в защиту, а просто ограничивает ток на этом уровне.

В таком режиме солнечные панели вместе с ветрогенератором работают у меня всю зиму, и лично мне всё нравится учитывая особенности именно моей электростанции.

Источник

Комбинированные системы с солнечными батареями и ветрогенераторами

Использование солнечных батарей позволяет обеспечить дома бесплатной энергией, особенно в условиях нестабильности электроснабжения. Однако у этого метода есть один недостаток – в пасмурную погоду эффективность гелиосистемы очень низка, и дому требуется дополнительный источник энергии. Применение разного рода генераторов (бензиновых, дизельных) неудобно, поскольку они требуют значительных расходов и очень шумят. Лучший выход – комбинированные установки, включающие в себя солнечные батареи и ветрогенераторы.

Такие гибридные комплексы позволяют в полной мере использовать возможности природной энергетики и компенсировать их отдельные недостатки. К примеру, ветрогенераторы в принципе нецелесообразно применять без резервного энергоисточника. Дело в том, что при нескольких безветренных днях подряд (что отнюдь не редкость) аккумуляторы разряжаются слишком сильно, что негативно сказывается на их работоспособности и ресурсе.

Солнечные же батареи малоэффективны в пасмурную погоду, которая обычно сопровождается ветреностью. Таким образом, ветряки и гелиопанели отлично дополняют друг друга, обеспечивая постоянную зарядку АКБ и поддерживая энергоснабжение дома на должном уровне. Еще одно преимущество – солнечные системы не требуют расходов на содержание и топливо, при этом они максимально эффективны в летний период, когда скорость ветров обычно ниже.

В летний период и солнечной зимой максимальная энерговыработка будет идти от солнечных батарей. А вот в пасмурное межсезонье, когда облачность значительна и дуют сильные ветра, производить энергию будут преимущественно ветряки.

Состав гибридных систем

Каждая комбинированная солнечно-ветровая установка включает в себя гелиопанели, ветрогенератор, зарядный контроллер, аккумуляторы и инвертор. Мощность компонентов подбирается исходя из нужд энергопотребления. Но нужно учитывать и еще один фактор – тип ветрогенератора.

  • Горизонтальные. Эти установки дешевле, но они эффективны при господствующих ветрах одного направления. В условиях переменных ветров их производительность минимальна;
  • Вертикальные. Стоят эти источники энергии примерно в 2-3 раза дороже горизонтальных, но при этом эффективно работают и в случае постоянно меняющегося направления ветра.

Таким образом, ветрогенераторы и солнечные батареи могут полностью обеспечить энергонезависимость жилья. Кроме того, такие системы отличаются более гибкими возможностями подбора конфигурации, чем чисто солнечные или чисто ветряные установки. Вполне приемлемы и расценки на них.

Например, система из ветряка мощностью 600 Вт и батареи в 250 Вт (с контроллером, инвертором и АКБ) обойдется примерно в 85 тыс. рублей. Выработка установки составит порядка 100 кВтч/месяц.

Установка и коммутация

Монтируются элементы в гибридной системе также, как и в случае независимой установки. Солнечные батареи располагают на крыше или на отдельной монтажной ферме (в этом случае можно оптимально отрегулировать их наклон относительно горизонта), а ветряки – на мачтах возле дома.

Несмотря на то, что при вращении лопасти ветряков издают специфический звук (что многие относят к их недостаткам), они не создают дополнительных неудобств. Дело в том, что звук достаточно монотонен и не резок, поэтому люди очень быстро перестают замечать его.

Подключение проводится по классической схеме. Ветрогенератор и солнечные панели через контроллер коммутируются к АКБ, где и накапливается выработанная энергия. Потребители переменного тока подсоединяются через инвертор.

Затраты

Как и любая другая автономная энергосистема, солнечно-ветряная установка требует солидных первоначальных расходов. Однако все вложения окупаются полной энергонезависимостью от центральных сетей. Расходов же на обслуживание такая система не требует. Окупаемость проекта зависит от сложности установки и нагрузки на систему, но в среднем она составляет 2-3 года. Этот срок может показаться слишком большим, но нужно учитывать, что цены на электричество постоянно поднимаются, кроме того, подключение коттеджа к центральному энергоснабжению и установка соответствующего оборудования (трансформатора, кабельной трассы) также требуют солидных затрат.

Таким образом, для дома установка гибридной системы будет лучшим решением. На даче ставить подобные комплексы нерационально, поскольку они рассчитаны на круглогодичное использование, а дачей пользуются в основном в летний сезон.

Источник

Альтернативные источники энергии для дома: солнечные батареи и ветрогенераторы

Наибольшее распространение из альтернативных источников электроэнергии получили солнечные батареи и ветрогенераторы. Обе технологии достаточно хорошо отработаны, цены на оборудование постепенно снижаются, и сейчас, например, солнечный модуль мощностью 200–250 Вт можно приобрести за 15–20 тыс. руб.

Какой и как источник выбрать?

Разные типы кремниевых солнечных батарей. Вариант с монокристаллическими модулями (пластина модуля выполнена из цельного кристалла кремния). Фото: ShutterStock/Fotodom.ru

Вначале определитесь с количеством электроэнергии, которое вам понадобится. Собираетесь ли вы построить систему энергоснабжения дома полностью на солнечной или ветровой энергии или использовать её в качестве аварийной системы энергоснабжения? Ведь ценники получаются очень разные. Для аварийной системы (с выходной мощностью 200–500 Вт) достаточно одного-двух солнечных модулей и дополнительного оборудования — всего на сумму порядка 40–50 тыс. руб. А вот полностью перейти на автономное энергоснабжение будет стоить гораздо дороже. Например, система на солнечных батареях с выходной мощностью 2500 Вт обойдётся в 300–400 тыс. руб. Аналогичный порядок цифр и в ценниках на ветрогенераторы.

Контроллеры солнечных батарей, инверторы и современные аккумуляторные батареи в условиях жилого помещения не занимают много места и не требуют отдельного помещения. Их обслуживание и эксплуатация может производиться как локально, так и удалённо, с помощью планшета или смартфона (через сеть Ethernet или Wi-Fi). Фото: ABB

С поли­­кристал­­лическими модулями (содержит несколько кристаллов). Фото: ShutterStock/Fotodom.ru

Непосредственно выбор типа «зелёного» источника зависит от климатических и географических особенностей местности. Скажем, для низкоширотных рай­онов с малооблачной погодой (например, в Крыму) лучше всего подходят солнечные батареи. В открытой местности, на возвышенностях и морском побережье, для которого характерны продолжительные сильные ветры, хорошо зарекомендовали себя ветрогенераторы. На большей части европейской России мало найдётся мест с климатом, идеально подходящим для того или иного типа генераторов электроэнергии. В таких условиях имеет смысл устанавливать оба типа генераторов, которые будут подстраховывать друг друга. Конечно, такая система получается значительно дороже — но что поделать, таковы особенности российского климата.

Солнечные батареи

В настоящее время получили распространение два вида этих устройств: кремниевые и плёночные. Каждый из них подразделяется на типы:

  1. кремниевые монокристаллические. Каждый отдельный светоприёмный модуль выполнен на основе пластины кремния, вырезанной из цельного кристалла. Эти батареи отличаются наибольшим КПД (до 22–24 %), но и самой высокой стоимостью;
  2. кремниевые поликристаллические. Пластина отдельного модуля имеет структуру, состоящую из нескольких кристаллов кремния, за счёт чего устройство удешевляется примерно вдвое. КПД 13–15 %;
  3. кремниевые аморфные. По стоимости процентов на 20 ниже поликристаллических, КПД примерно 6–8 %;
  4. плёночные, на основе теллурида кадмия, селенида меди, полимерных материалов и др. Они появились недавно и не получили широкого распространения, но рассматриваются многими производителями как весьма перспективные. КПД и стоимость примерно на 20 % выше, чем у аморфных.

Наибольшее распространение получили сегодня панели поликристаллические и на основе аморфного кремния. Эти модификации проще в изготовлении и дешевле, нежели панели на основе монокристалла, а кроме того, батареям на основе аморфного кремния не требуется прямое облучение потоками солнечного света, они более эффективно воспроизводят электричество при рассеянном освещении и, соответственно, лучше подходят для средней полосы России, где много облачных дней. Для регионов с преобладанием ясной погоды (Крым, Центральная Азия), наоборот, лучше использовать моно- и поликристаллические батареи.

Ветрогенераторы

Ветрогенератор преобразует ветровую энергию в электрическую. Современные модели способны работать уже при небольшом ветре (2–3 м/с), хотя оптимальная скорость ветра для их работы выше и составляет обычно 10–12 м/с. При скорости ветра 3 м/с такой ветрогенератор будет выдавать примерно 5 % мощности от возможной, при скорости 7 м/с — около 50 %. Поэтому при подборе модели генератора необходимо учитывать среднегодовую скорость ветра в вашей местности, этот показатель всегда указывается в описании.

С аморфными модулями. Фото: ShutterStock/Fotodom.ru

Выбирают ветрогенератор и по величине ежемесячной выработки тока. Вы должны подсчитать, сколько электричества вам потребуется. Скажем, вы решили быть экономными и ограничиться аварийным освещением, работой циркуляционного насоса и возможностью зарядки смартфона или ноутбука. Тогда вам потребуется выходная мощность тока 150–200 Вт, это примерно 50–100 кВт • ч в месяц. Такую выработку обеспечат модели небольшой мощности, их можно приобрести сегодня за 20–30 тыс. руб. А если вам требуется больше энергии, то и ветрогенератор следует выбрать мощнее: модели, вырабатывающие за месяц несколько сотен киловатт-часов, но и цена у них будет выше — 100–150 тыс. руб.

Комплексное решение с солнечными батареями и мощными ветрогенераторами, рассчитанными на ветер, меняющийся в широком диапазоне скоростей. Фото: ShutterStock/Fotodom.ru

Аналогично производится и расчёт для солнечных батарей. Подсчитывается необходимое количество электроэнергии, и на основании расчёта подбираются модули, чтобы их совокупная производительность с гарантией обеспечивала ваши потребности. Расчёт получается чуть сложнее, так как величина ежемесячной выработки тока сильно меняется от времени года. Летом она максимальная, а зимой едва достигает 10–20 % от летней. Поэтому выбирайте солнечные батареи в зависимости от того, собираетесь ли пользоваться ими только в тёплое время года (в дачный сезон) или круглый год. Кроме того, эффективность выработки сильно зависит от того, насколько удачно вы расположили солнечные батареи. Если их не получилось развернуть в нужном направлении и под нужным углом, то эффективность выработки энергии заметно уменьшится — на 20–30 %, а то и больше. Поэтому лучше, чтобы расчёты по требуемой производительности батарей с учётом места их расположения делал специалист.

Источник

Оцените статью