Солнечные батареи для пластиковых окон

Солнечные окна изменят мировой рынок

Солнечные окна и квантовые точки делают окно источником энергии

Плюсы и минусы солнечных окон

Как делают окна будущего

Альтернативы пленкам есть: окна с квантовыми точками

Между тем, Solar Window не единственная компания, которая преуспела в создании инноваций, позволяющих использовать пространство окна для пополнения и умножения солнечной энергии. Группа американских инженеров из лаборатории в г. Лос-Амос смогла добиться того, чтобы солнечные панели были встроены непосредственно в окно без ущерба для его светопрозрачности.

Стекло превращается в солнечную батарею с помощью «вживленных» в него квантовых точек. Их называют ЛСК — люминесцентные солнечные концентраторы. ЛСК собирают энергию солнца как цветок и направляют свет с больших площадей на микроэлементы. Особенностью ЛСК является то, что ими можно управлять. Например, можно настроить пучок таких точек на сбор света с фиксированной длиной волны и игнорирование всех других волн. Состоят такие квантовые точки из полупроводников и поливинилпирролидона.

Преимущество технологии в долговечности продукта и его устойчивости к различным атмосферным явления. Кроме этого, квантовые точки хорошо интегрируются не только на стекло стандартных размеров, но и в огромные фасадные панели из стекла и полностью исключает необходимость использования дорогих фотоэлектрических материалов. До внедрения в массовое производство инновации не хватает хороших показателей по КПД: 6%. Пока эта цифра остается на отметке 1,9%. При хороших результатах новинка обещает сделать нулевым потребление энергии в городах. Скажем, 12 000 панелей в окнах Всемирного делового центра обеспечат электричеством 350 жилых помещений.

Читайте также:  Применение солнечных батарей статьи

Крыша дома моего – это электрогенератор!

Зеленая энергетика – в массы!

Tesla наиболее известная в производстве энергогенерирующих крыш, но не единственная. Интерес к возобновляемым источникам энергии заставил многих производителей задуматься об их эргономике, эстетике и интеграции в привычную среду: ведь в чистом виде панели выглядят довольно технократично и «бесчеловечно». Отсюда многообразный дизайн крыш, который должен имитировать традиционные строительные материалы, такие как дерево и камень. Компания Sistine Solar производит солнечные панели в виде черепицы, кирпичной кладки и даже мха. Итальянцы из фирмы Dyaqua решили сконцентрироваться на производстве покрытий для исторически ценных зданий: их панели имитируют деревянный брус, камень, старую черепицу.

Подход Tesla более широкий: она работает с энергией в трех аспектах – производство, накопление и транспорт. Черепица для крыш в содружестве с аккумуляторами нового поколения Power 2 полностью реализует задумку Мастер-плана Два от Илона Маска: согласно ему здание полностью переводится в режим работы на солнечной энергии.

Новинки Tesla пока доступны только американцам, но уже готовятся расширить ареал своего применения и начать движение на экспорт. Как это изменит реальный мир и экономику – покажет время. Все перечисленные технологически инновации при условии объедения способны кардинально влиять на развитие оконной индустрии и снижение потребления обычных источников энергии, что приведет к энергетической революции во всем мире.

Конечно, это процесс не одного дня. Сегодня продукты рынка солнечной энергетики все еще являются роскошью для рядового покупателя. Причиной тому, сравнительно высокая стоимость.

Источник

В Австралии создали солнечные батареи, которые встроены прямо в оконные стекла

Полупрозрачные солнечные элементы, которые можно встроить в оконное стекло, могут трансформировать архитектуру, городское планирование и производство электроэнергии. Австралийские ученые, создавшие такое изобретение, опубликовали его данные в Nano Energy.

Исследователи преуспели в производстве солнечных батарей на основе перовскита следующего поколения, которые генерируют электричество и пропускают свет. Сейчас они изучают, как новая технология может быть встроена в коммерческие продукты с Viridian Glass — крупнейшим производителем стекла в Австралии.

Эта технология превратит окна в активные генераторы энергии, потенциально революционизируя дизайн здания. Исследователи говорят, что 2 м² солнечного окна будут генерировать примерно столько же электроэнергии, сколько стандартная солнечная панель на крыше.

Идея полупрозрачных солнечных элементов не нова, но предыдущие проекты провалились, потому что они были очень дорогими, нестабильными или неэффективными. Австралийцы изобрели другой подход.

Они использовали органический полупроводник, который можно превратить в полимер, и использовали его для замены обычно используемого компонента солнечного элемента (известного как Spiro-OMeTAD), который демонстрирует очень низкую стабильность, поскольку создает бесполезное водянистое покрытие. Заменитель дал удивительные результаты.

«Эффективность преобразования солнечной энергии на крыше составляет от 15 до 20%. Полупрозрачные ячейки имеют эффективность преобразования 17%, при этом пропуская более 10% входящего света, поэтому они находятся прямо в зоне получения ультрафиолета. Я давно мечтал иметь окна, которые генерируют электричество, и теперь это становится реальностью. Мы будем стремиться разработать крупномасштабный процесс производства стекла, который можно легко перенести в промышленность, чтобы производители могли легко освоить эту технологию».

Яцек Ясениак, Центр передовых технологий ARC в науке об экситонах (Exciton Science) и Университет Монаш.

Солнечные окна станут благом для владельцев зданий и жителей, и принесут новые проблемы и возможности для архитекторов, строителей, инженеров и проектировщиков. Потому что так получается компромисс. Солнечные элементы можно сделать более или менее прозрачными. Чем они прозрачнее, тем меньше вырабатывается электричества, поэтому архитекторам это нужно учитывать.

Он добавил, что солнечные окна, окрашенные в той же степени, что и нынешние коммерческие окна, будут генерировать около 140 Вт электроэнергии на м². Первое применение, скорее всего, будет в многоэтажных домах. Потому что большие окна, установленные в высотных зданиях, дороги в изготовлении. Дополнительные затраты на включение в них полупрозрачных солнечных элементов будут незначительными.

Но даже с дополнительными затратами здание получает электричество бесплатно. До сих пор каждое здание проектировалось исходя из предположения, что окна в основном пассивны. Теперь они будут активно производить электричество. Планировщикам и дизайнерам, возможно, придется даже пересмотреть то, как они размещают здания на площадках, чтобы оптимизировать ловлю стенами солнца.

Сейчас исследователи тестируют тандемное устройство, где будут использоваться солнечные элементы на основе перовскита в качестве нижнего слоя и органические солнечные элементы в качестве верхнего.

Что касается того, когда на рынке появятся первые коммерческие полупрозрачные солнечные элементы, это будет зависеть от того, насколько успешным будет масштабирование технологии. Разработка таких солнечных окон приведет к новым стеклянным инновациям и технологиям в будущем.

Источник

Окна с солнечными батареями

Будущее.

Учёные Американской Национальной Лаборатории Возобновляемой Энергии (NREL) вот уже несколько лет работают над созданием окна, в котором стёкла будут работать как солнечные батареи, преобразующие солнечный свет в электрическую энергию. Одна из основных задач над которой бьются светлые американские умы – количество пропускаемого света через такие стёкла. Ещё в августе 2014 года Массачусетский Университет явил миру полностью прозрачное стекло, работающее по принципу солнечного концентратора, которое способно генерировать “халявную” энергию!

Как видите на фотографии ↑ – это действительно довольно прозрачное стекло, однако, его КПД составляет всего лишь 1%.

Сегодняшняя новость заключается в том, что ученые из NREL смогли добиться КПД в невероятные 11,3% ! Но есть пара моментов:

Светопропускание. Солнечный свет активизирует слой поглотителя, состоящий из комплексного соединения перовскит-метиламинового галогенида, и стекло из прозрачного состояния (68% видимого пропускания) переходит в состояние поглощающее «фотовольтаическое цветное» при котором оно пропускает менее 3% видимого излучения (из-за диссоциации метиламина):

После охлаждения слоя, стекло снова обретает свою прозрачность.

Тем, кто любит научные картинки, вот иллюстрация процесса:

Если захочется узнать ещё больше деталей по этой технологии, то вот вам свеженькая ссылка на опубликованное исследование (англ.).

И второй момент – это управление светом. Чем ярче солнечный свет снаружи, тем темнее становится стекло и настраивать прозрачность пока не научились. Наверняка, научатся в ближайшем будущем! Уж если люди научили роботов крутить сальто, то что им стоить научить стёкла затемняться так как надо. Вот видео:

У идеи, конечно, неплохие перспективы: экономия на охлаждении зданий в странах с жарким климатом позволит экономить, но только пока непонятно сколько, так как промышленного образца нет, а цена прототипа вряд ли выглядит привлекательной. 🙂

Нам, жителям Петербурга с нашими примерно 75 солнечными днями в году, можно лишь порадоваться за научный прогресс, но мы скорее будем покупать окна, дающие больше света:

Настоящее.

А пока современный рынок окон может кое-что предложить и для нас с вами! Например энергоэффективные стеклопакеты с мультифункциональными стёклами, которые и сохранят тепло в доме и не допустят перегревания, случись наступить жаре. Если интересно, загляните в раздел Стеклопакеты и полистайте материал про Теплопакет DS например.

Оптимальный метод коммуникации

К нам всегда можно обратиться, в любое время дня и ночи по электронной почте inbox@oknasmart.ru или напрямую с сайта (форма обратной связи ниже). Мы очень любим электронную почту: отвечаем быстро, даём полезные ссылки, обсуждаем и пересылаем варианты расчётов, которые вы можете посмотреть в любое удобное вам время, а не тогда, когда мы работаем. Пишите и, конечно, звоните: (812)3857450 если так удобнее.

PS: Ещё интересности всякие почитать:

А вот ещё про наш с вами город:

  • Наш рассказ про сад цветов на улице Рентгена 15.
  • Нарисованные окна в одном из дворов Санкт-Петербурга (2009г)
  • Про мозаичный дворик в Петербурге.
  • Посмотрите на Итальянский дворик недалеко от Невского.
  • Наука: В Питере изобретать! Рассказ про энергоэффективный проветриватель к окну, что придумал аспирант ИТМО.

Источник

КПД частично прозрачных окон с солнечными батареями превысил 11%

Организация National Renewable Energy Laboratory (NREL) довольно давно работает над созданием эффективного прототипа окон со стеклами, играющих роль солнечных батарей. У таких окон двойное назначение. Во-первых, они снижают температуру помещения, поскольку степень их прозрачности можно изменять. Во вторых, они генерируют электроэнергию. И чем ниже прозрачность такого стекла, тем больше энергии производят такие окошки. Сейчас КПД «солнечных окон» составляет 11,3%. Фотоэлементы сделаны из любимого материала многих лабораторий — перовскита.

Создатели окон подсчитали, что их окна позволяют компаниям, здания которых оснащены новинкой экономить на охлаждении. Кстати, обычно на нужды вентиляции, охлаждения или нагрева уходит около 80% бюджета, отведенного на затраты электроэнергии. Если использовать эту разработку, то можно значительно снизить затраты (правда, разработчики еще не подсчитали, насколько).

При освещении фототермическое нагревание активизирует слой поглотителя, состоящий из комплексного соединения — перовскит-метиламинового галогенида, из прозрачного состояния (68% видимого пропускания) в поглощающее «фотовольтаическое цветное» состояние (пропускает менее 3% видимого излучения) из-за диссоциации метиламина. После охлаждения комплекс метиламинов восстанавливается, возвращая слой абсорбера в прозрачное состояние, в котором устройство действует как обычное окно, пропускающее для видимый свет».

Специалисты, занимающиеся этим проектом, подробно изучили причину падения эффективности работы окна после первого цикла. В целом, после доработки их система сможет выдержать около 50 000 циклов. Стандартный фотоэлемент, панель, способна работать в течение 25 лет, это около 9 000 циклов.

Чемпион среди окон, созданных командой — система, которая смогла работать с КПД в 11,3%. Средний результат пяти окон — 10,3%, что тоже очень неплохо. Недавно в США было проведено исследование, авторы которого считают, что в течение нескольких лет около 40% электричества в США будет вырабатываться при помощи оконных систем такого типа или похожих структур. При этом расчетная эффективность систем была предусмотрена на уровне в 5%. Для этого необходимо, чтобы 464 515 m 2 стекол были «умными».


На рисунке d. хорошо видно, как умное стекло вырабатывает все больше энергии при изменении состояния от полностью прозрачного к непрозрачному. Правда, максимальная производительность стекла актуальна лишь во время первого цикла. Затем эффективность системы падает

В целом, сама технология выглядит довольно перспективной. Но есть несколько мелочей, которые можно назвать критическими. Например, прозрачность «солнечных» окон нельзя (пока) регулировать. Возможно, разработчики добавят эту функцию немного позже, но пока все работает по следующему принципу: чем светлее снаружи, тем темнее внутри. Да, электричество вырабатывается, но станет ли от этого легче людям, которые работают в офисе, закрытом подобными окнами?

Скорее всего, нет. С другой стороны, можно представить, что такие стекла устанавливают не подряд, а с определенным промежутком, с тем, чтобы обеспечить определенный уровень освещенности внутри. Либо же покрывают такими стеклами этажи, где люди находятся не постоянно. В этом случае можно обойтись и без регулировки.

Кстати, есть и полностью прозрачные солнечные батареи. Его создали исследователи из Мичиганского государственного университета. Материал выглядит, как стекло, он полностью прозрачен, но энергию вырабатывать он может. Конечно, не с таким высоким КПД, как «умные окна», описанные выше, но все же. В этом материале используется технология «солнечного концентратора», когда содержащиеся в нем органические соли поглощают невидимое излучение (ультрафиолетовое и инфракрасное). Внутри панели это излучение переходит в инфракрасный диапазон. Затем излучение, отражаясь от плоскостей панели внутри, проникает к ее краям. Ну а там уже установлены обычные фотоэлементы, которые поглощают свет, выделяя энергию.

К сожалению, КПД в этом случае всего 1%, хотя разработчики и считают, что его можно увеличить до 5%. У современных солнечных панелей КПД достигает 25%, в лабораторных условиях наблюдают и все 50%. Но 1% — это тоже хорошо, в особенности, если устанавливать такие стекла в регионах с максимальным уровнем инсоляции.

Источник

Оцените статью