Солнечные батареи для лодок с электромотором

Солнечные батареи для лодок с электромотором

Солнечная батарея для лодочного электромотора, катера, яхты. катамарана,.

Маломерные суда с электромотором на солнечных батареях для водных прогулок, рыбалки путешествий завоевывают весьма серьёзную популярность.

Учитывая, что мощность небольших лодочных электромоторов порядка 150 – 400 Вт, а мощность солнечной батареи 95 Вт . приблизительное соотношение стоянка/ход 1/2 – 1/4.

Без учёта работы солнечной батареи во время хода.

Т.е., фактическое время хода увеличивается от 25 до 70%.

Неплохой расклад для рыбаков, туристов и праздно отдыхающих.

Несмотря на всю экзотичность использования солнечных батарей для питания электромотора плюсы слишком очевидны.

Это автономность и возможность подзарядки во время движения.

Вы не привязаны к точке не возврата ёмкостью аккумулятора, да и цивилизация с розеткой не всегда рядом.

За несколько дней, с палаткой можно уйти на сотню километров и при этом остаться с заряженным ноутбуком, телефоном и прочими аксессуарами современности.

Есть возможность бесшумно передвигаться по заповедным местам, куда не допускаются моторные лодки и катера с двигателями внутреннего сгорания.

Применить светодиодное освещение стоянки, для ночной рыбалки.

В общем, каждый сам себе режиссёр, но способный ценить надёжность, простоту эксплуатации, экологичность и удовольствие от слияния с природой.

Не говоря уже о том, что энергия бесплатная, а канистры если и присутствуют, то с квасом!

Применение солнечной батареи увеличивает срок службы аккумулятора, сокращая количество циклов заряд/разряд и облегчая режим энергопотребления.

К примеру, для определённого отрезка пути требуется 10 циклов заряда аккумулятора ёмкостью 60 А/ч.

Имея возможность подпитки электромотора от солнечной батареи во время движения, количество циклов сокращается до 6 – 7, в зависимости от тягового усилия электромотора.

Приблизительное соотношение тягового усилия к потребляемому току 1:2, т.е., если ток 30 ампер тяговое усилие 15 кг (оптимальный вес лодки 800 кг).

Чем легче, тем менее потребляемый ток при одинаковых скоростях.

Для надувной лодки количество циклов заряда сокращается в 2 и более раз.

Вплоть до непосредственного хода от солнечной батареи!

Не говоря уже о возможности дышать чистым воздухом или записаться в ряды зеленых.

И с Вашего позволения, несколько полезных советов для использования солнечных батарей на следующей странице .

Источник

Солнечная батарея в лодку

lexir38

ст. лейтенант

Доброго дня коллеги!

Не нашел подходящую тему, кроме альтернативной энергетики на даче.

За два сезона большое неудобство доставляет необходимость подзарядки бортовых АКБ. В силу специфики нахождения на воде, а это именно спортивная рыбалка, лодка постоянно на коротких переходах в течении всего светового дня. Т.е. выход на точку, работа 15-20 минут, переход, и так весь день. Генерато просто физически не успевает зарядить АКБ за время коротких переходов. Соответственно за 5-6 рыбалок на АКБ снижается заряд. Стоит БОШ 80ка, двиг Ямаха 90 2т с генераторм 10А.

Кроме двигателя, АКБ подпитывает освещение в рубке и на палубе, музыку, питание эхолота и зарядку различных прочих устройств.

Проблема усугубляется отсутствием на лодочной на причале возможности дозарядки, соответственно надо снимать АКБ и тащить либо к охране, либо в машину и в гараж. В этом году хочу еще один АКБ поставить. Вообщем назрело желание решить этот вопрос.

Солнечная энергетика развивается довольно давно и просматривая магазин заметил, что она вполне доступна. С учетом свободного места решил прикупить и установить гибкую водонепроницаемую панель E-Power .40W [40W / 12V / Mono] с характеристиками:
— высокий КПД ( более 22% );
— водонепроницаемая конструкция;
— отсутствие деталей из стекла;
— небольшой вес;
— небольшая толщина панели не создает дополнительного сопротивления ветру;
— высокая износоустойчивость;
Тип Монокристаллический
Количество элементов в модуле 36 штук (3х12)
Мощность 40 Ватт
Вольтаж без нагрузки 20,6 В
Рабочий вольтаж 18,0 В
Ток короткого замыкания 2,45 А
Рабочий ток 2,22 А
КПД 22 %
Максимальное напряжение в системе 1000 В

под нее контроллер: EPSolar LS0512E [5A / 12V]
— напряжение в системе 12В;
— максимальный ток на входе 5 А;
— максимальное напряжение АКБ 16 В;
— падение напряжения в схеме заряда

0,26 В;
— падение напряжения в схеме разряда

0,15 В;
— максимальное собственное потребление

6 В;
— рабочая температура -35С — +55С;
— терминалы 2,5 кв.мм;
— класс защиты IP 30;
— габариты 92,8х65х20,02 мм;
— вес 0,74 кг.

Конечно хотелось бы побольше поставить, но батарея разрастается в габаритах, а это создает дополнительный дискомфорт.

Собственно с учетом, что все лето лодка стоит на лодочной, вопрос: достаточно ли 2.2 А для зарядки АКБ 80ки? Как обеспечить заряд от солнечных батарей одновременно двух АКБ, при том что на мотор стоит переключатель, т.е. мотор заряжает либо один, либо другой.

Источник

Солнечные батареи для яхт и катеров

Какой тип лодок может использовать солнечные панели?

  • Маленькие лодки:

Солнечная панель может полностью заряжать батарею, когда лодка находится на швартовке. Все батареи саморазряжаются, а небольшая панель может устранить все проблемы жизнедеятельности судна. Поскольку солнечные батареи производят чистую энергию постоянного тока, они являются отличными зарядными устройствами.

  • Крейсерские и гоночные яхты:

Они могут использовать солнечные батареи для увеличения или замены других источников заряда. Многие парусники, которые ходят по долгу, должны использовать свой двигатель в течение 1-2 часов в день для зарядки батарей и замены потребляемой энергии. С установкой пары солнечных батарей эти лодки часто могут продлевать свое время между использованием двигателя на день или более. По-настоящему эффективные лодки, оборудованные солнечной батареей, возможно, не должны использовать двигатель для зарядки вообще.

Сколько энергии вы хотите создать?

Панели солнечных батарей заряжают батареи 12V, сами могут иметь напряжение 20V. Измеряются либо в ваттах, либо в амперах. Мы оцениваем их в амперах, так как у большинства яхтсменов есть представление о том, сколько в ампер-часах их емкость батареи, или сколько ампер-часов они используют за один день во время круиза. Мы также используем упрощающее предположение, что панель будет выводить максимальную производительность в течение пяти часов в день.

Мы достигаем этих значений, усредняя количество часов, которые панель проводит на полном солнце (определяется как 1000 Вт энергии на квадратный метр, большинство мест получают не более 80-85% полного солнца).

Проблема с поломками ячеек (затенение)

Неработающие (теневые) ячейки, покрывающие даже небольшую часть панели, оказывают огромное влияние на выходную мощность. Теневые ячейки показывают большое падение напряжения, которое выступает в качестве барьера для полезного производства энергии. Поломка двух или более ячеек отключает панель, пока проблема не будет удалена.

Этот дефект несколько корректируется за счет использования байпасных диодов на каждой ячейке, что позволяет модулю генерировать мощность даже при частичном затенении.

Чем холоднее температура на поверхности панели, тем выше выход энергии. Производительность в ясное холодное зимнее утро может быть на 30-40% выше номинальной.

Калибровка панелей для аккумулятора

Возьмите выход солнечной панели (в миллиамперах) и разделите значение на два. Это размер батареи, которую он может поддерживать. Солнечная панель 150 мА может поддерживать аккумулятор примерно до 75 Ач. Панель 1500 мА может обеспечить достаточную мощность, чтобы поддерживать батареи, при условии, что на аккумуляторах не будет нагрузки, кроме саморазряда.

Вам нужен контроллер заряда?

Как правило, панели, которые производят менее 1,5% номинальной емкости батареи в ампер-часах, не требуют регулирования. Это означает, что панель 1.5A является самой большой, которую вы должны использовать без регулятора на 100-часовом аккумуляторе. Регуляторы обычно должны использоваться, когда у вас есть две или более панели, подключенные к вашим батареям.

Если вы обеспокоены повреждением новых гелевых AGM из-за чрезмерной зарядки, вы можете добавить небольшой недорогой контроллер заряда. Эти контроллеры, также называемые регуляторами, рассчитаны на максимальное количество усилителей в вашей солнечной батарее, и мы предлагаем варианты обработки между 7А и 50А.

Постоянно монтируется или временно?

Большие жесткие панели могут быть постоянно смонтированы в специальном кронштейне, особенно при использовании на борту крейсерского судна. Сальниковые панели изготовлены для морской среды и могут устанавливаться на постоянной основе с помощью угловых прокладок. Их также очень легко удалить и хранить компактно. Складные панели обычно изготавливаются для временного использования, поскольку они менее защищены от атмосферных воздействий, чем другие типы.

Типы солнечных батарей

Существует два типа панелей, которые в основе используют:

  • кремниевые кристаллы;
  • тонкие химические пленки;


Монокристаллические и многокристаллические (c-Si) панели являются самой старой технологией, а также самой мощной. При правильном размере и согласовании с соответствующими батареями это панели служат для использования при больших нагрузках постоянного тока, таких как освещение, телевизор, радио или видеомагнитофон.

В кристаллических панелях кремний, выращивается в кристаллы, очищается (дорогостоящий процесс), нарезается на тонкие пластины и «легируется» с добавлением химических веществ. Солнечные элементы создают электрический ток, количество определяется размером и эффективностью ячейки, а также количеством света. Солнечные модули создаются путем соединения ячеек параллельно с увеличением силы тока и последовательно для увеличения напряжения. Типичные солнечные модули имеют 30 или 36 ячеек (генерирующих от 14 до 18 В постоянного тока).

Аморфные тонкопленочные панели Silicon (a-Si) имеют примерно 50% эффективности многокристаллических, но могут быть изготовлены в гибких формах, чтобы они могли огибать предметы или складываться. Они более эффективны при низких или рассеянных условиях освещения и менее подвержены падениям напряжения при нагревании. Это панели чаще всего используются для низкого заряда и поддержания заряда батареи. Обычно они не имеют достаточной мощности для серьезного пополнения энергии.

Тонкопленочные панели и их производительность при различных уровнях освещенности

Вот реальный пример того, как панели работают под разными уровнями света. В следующей таблице показана энергия, доступная от аморфных панелей PowerFilm, таких как их гибкие солнечные панели, при различных условиях освещения относительно полного состояния солнца:

Простые правила для лучшего производства энергии

Держите панели как можно перпендикулярно лучам входящего солнца. Мы понимаем, что, если вы устанавливаете панели на лодке при швартовке – то не сможете гарантировать, перпендикулярное расположение, но все панели будут получать больше энергии, если они получат прямой солнечный свет. Это убедительная причина для монтажа панелей на крейсерских лодках, чтобы их можно было направлять в соответствующем направлении, независимо от того, какой сезон, курс или широта.

Избегайте теней: выход панели (особенно кристаллической панели) резко падает при затенении, даже если только 10% панели находится в тени. Небольшая тень может уменьшить выход на 50% и более.

Держите свои панели прохладными. Выход панели падает, когда температура повышается, поэтому, если вы можете обеспечить некоторую вентиляцию — непременно сделайте это.

Источник

Солнечные батареи для яхты

Стоимость электрической энергии на катере или яхте очень высока. Особенно, если во время стоянки владелец заряжает аккумуляторы двигателем, на котором не установлен ни внешний регулятор напряжения ни DC-DС зарядное устройство. В этом случае любое оборудование, вырабатывающее электричество дешевле, чем ДВС становится экономически выгодным и быстро окупается.

Типы солнечных панелей

Солнечные батареи преобразуют в электричество бесплатный свет солнца, а с учетом того, что цена полупроводников, из которых они сделаны, с каждым годом снижается на яхте или катере панели окупаются в течении нескольких месяцев — года. Их экономически выгодно устанавливать на лодку как можно больше. Однако результат разочарует, если не правильно подобрать мощность батарей или смонтировать их не в тех местах.На катерах и яхтах используется три типа солнечных панелей:

В монокристаллических панелях каждая ячейка вырезана из одного кристалла кремния. Хотя некоторые полугибкие модели также используют монокристаллические ячейки, как правило панели этого типа жесткие и не переносят изгибов. Коэффициент преобразования света в электрическую энергию у них достигает 22%, но чаще всего составляет 16 — 18%.

У большинства монокристаллических панелей сплошная жесткая задняя стенка. Недавно появились двухсторонние модели, позволяющие собирать свет обоими сторонами. Это удобно, когда под панелью расположена отражающая поверхность, например, белая верхняя часть кабины.

Эффективность ячеек, % 22,2-22,4
Мощность в рабочей точке (Pmpp), Wp 310
Напряжение холостого хода (Uoc), B 23,1
Напряжение в рабочей точке (Umpp), B 18,8
Ток в рабочей точке (Impp), А 16,46
Ток короткого замыкания, (Isc), A 17.54
Тип Монокристаллические.
Гибкие. Материал поверхности ETFE или PET

В поликристаллических солнечных батареях каждая ячейка состоит из нескольких небольших кристаллов. Такие панели менее эффективны, чем монокристаллические, особенно при низких уровнях освещенности, но зато легче и дешевле.

Во время производства аморфных пластин, испаренный кремний осаждается на подложке. Аморфные панели самые дешевые и очень гибкие, однако их эффективность наименьшая.

Каждая кремниевая ячейка, независимо от размера, при попадании на нее прямого солнечного света создает напряжение около 0,6 вольт. Напряжение всей батареи можно приблизительно определить умножив 0,6 на количество ячеек. Например, напряжение солнечной панели, состоящей из 30 ячеек — 18,0 вольт.

Выходной ток ячейки зависит от ее типа, качества и площади занимаемой поверхности. Поэтому чтобы получить одинаковую выходную мощность с помощью аморфных и монокристаллических панелей, аморфными придется занять в два раза большую площадь. Кроме того, мощность аморфных батарей примерно на 10% меньше номинальной в течение одного – двух лет после производства. В дальнейшем она стабилизируется.

Характеристики солнечных батарей

В спецификации на солнечную батарею производитель указывает следующие характеристики:

  • Voc — напряжение разомкнутой цепи. Это напряжение отсоединенной от аккумулятора солнечной батареи
  • Isc — ток короткого замыкания. Максимальный ток, который выдает панель, если замкнуть между собой ее клеммы. Выходное напряжение батареи в этом случае равно нулю
  • Imp — максимальный ток нагрузки
  • Vmp — напряжение при максимальной мощности
  • Pmax — максимальная мощность солнечной батареи. Это произведение двух предыдущих параметров. Иногда приводят только максимальную мощность и соответствующее напряжение на нагрузке. В этом случае ток нагрузки можно найти, разделив мощность на напряжение.

Ни одна из приведенных характеристик не описывает реальную производительность солнечной батареи – выходной ток при напряжении зарядки аккумулятора

Солнечные батареи испытывают в стандартных условиях. С точки зрения владельца катера или яхты наиболее важные из них — это предположение о том, что лучи солнца падают на батарею под углом 90 градусов, а ее температура составляет 25 ° C. Результаты испытаний изображают в виде вольтамперной характеристики. Иногда производители приводят данные для нескольких разных температур. Максимальная мощность солнечной батареи соответствует изгибу вольтамперной характеристики при 25 ° C.

Два способа подключения солнечных панелей к электрической системе катера или яхты. Слева — распределительная коробка обеспечивает безопасное и надежное электрическое соединение и гарантированно выдерживает атмосферные воздействия. Устанавливается с тыльной стороны панели. Если предполагается поверхностный монтаж, распределительную коробку можно установлена на передней стороне панели. Справа — два кабеля с силиконовой изоляцией и пластиковый кабельный ввод, расположены сзади панели. Электрическая полярность четко указана цветом изоляции. Альтернатива распределительной коробке.

Напряжение панели при максимальной мощности зависит от количества ячеек и их температуры. Оно всегда выше, чем рекомендуемое напряжение зарядки, но при подключении к аккумулятору снижается. Из-за этого даже при стандартных условиях тестирования выходная мощность при напряжении зарядки аккумулятора всегда меньше номинальной на 20-25%.

Точно узнать насколько падает мощность, можно если измерить ток, отдаваемый солнечной батареей во время зарядки аккумулятора. Например, 50-ваттная панель с номинальным напряжением 17 вольт обеспечивает ток 2,94 ампера (Вт / вольт = ампер). По вольтамперной характеристике при температуре 25-градусов находим, что при напряжении 13,0 вольт выходной ток солнечной батареи составляет 3,0 А (Напряжение 13 вольт подходит для зарядки разряженного аккумулятора и аккумулятора с подключенной нагрузкой). Хотя выходной ток изменился незначительно по сравнению со значением при номинальном напряжении, выходная мощность снизилась до 13,0 вольт × 3,0 ампер = 39 Вт. Это на 22% меньше номинальной мощности.

Существуют и другие потери, которые необходимо учесть перед установкой солнечных батарей на яхту или катер. На суше панели монтируют на опорах, расположенных под углом к горизонту. В этом случае на поверхность попадает максимальное количество лучей солнца. Но если таким образом установить панели на катере или яхте, после каждого поворота они будут терять солнце. Чтобы избежать этого панели на лодках почти всегда устанавливают в фиксированном месте горизонтально. Однако даже в тропиках солнечный полдень (время, когда солнце находится прямо над головой) продолжается всего несколько часов в день. В остальное время лучи солнца падают на панель при меньших углах и количество передаваемой ими энергии заметно уменьшается.

Мощность солнечных панелей

Реальная мощность панели снижается еще больше, если облако заслоняет солнце или на поверхность батареи падает тень от такелажа, парусов или мачты. Даже частичное затенение одной ячейки в цепи соединенных последовательно значительно уменьшает выходной ток.

Резкие тени влияют на выходную мощность сильнее, чем тени с нечеткими краями. Если на ячейках не установлены шунтирующие диоды, то резкая тень на одной ячейке уменьшит выходной ток всей панели пропорционально затененной площади (например, 50% затенения только одной ячейки снизят выход всей панели на 50%). Ячейка, оказавшаяся в тени, потребляет ток от соседних и перегревается.

Шунтирующие диоды уменьшают проблемы от затенения. Они изолируют попавшую в тень ячейку и останавливают развитие «горячих точек». Однако каждая изъятая из общей цепи ячейка уменьшает напряжение всей панели. Поскольку из-за нагрева выходное напряжение панели снижается, то может возникнуть ситуация, когда оно окажется ниже уровня пригодного для зарядки аккумулятора. В этом случае выгода от шунтирующих диодов исчезает.

Резких теней, падающих на поверхность солнечной батареи на яхте или катере необходимо избегать

Даже в солнечном климате, энергия, реально генерируемая панелью в течении дня, редко превышает уровень 4-5 часов работы при максимальной мощности. Часто это значение еще меньше. Расчеты лучше основывать на предположение, что дневная выработка электричества соответствует 3-4 часам работы батареи на номинальной мощности.

Такой способ сопоставления реальной энергии, вырабатываемой солнечной батареей с максимальной называется пиковыми солнечными часами — Peak Solar Hours (PSH). Существуют веб-сайты, которые рассчитывают PSH для разных частей света и для разных периодов года. Однако почти все они предполагают, что солнечные панели установлены под углом к горизонту и на них не падает тень. В этом случае PSH получается значительно завышенным. Поскольку реалистичная оценка PSH – 3, то число, получаемое от онлайн-калькулятора, необходимо уменьшить минимум на 30%.

6-ваттная солнечная панель, работающая 3 часа в день, в 12-вольтовой электрической системе произведет 18 Втч = 1,5 ампер-часа электрической энергии в день. 30-ваттная — 90 ватт-час или 7,5 ампер-часов в день (количество ампер-часов в день при напряжении 12,0 вольт = номинальная мощность / 4). Если ежедневное потребление электрической энергии известно, например, 60 ампер-часов при напряжении 12 вольт, то мощность солнечной панели определяют умножив ампер-часы на 4 (60 Ач × 4 = 240 Вт)

Напряжение солнечной батареи

Чтобы заряжать аккумулятор, напряжение солнечной батареи, как и любого другого зарядного устройства, должно быть выше напряжения аккумулятора. Причем разность должна существовать даже в том случае, когда напряжение аккумулятора вырастает до 14,0 вольт.

12-вольтовая солнечная панель, состоящая из 30 — 44 ячеек, при разомкнутой цепи обеспечивает номинальное напряжение от 18,0 до 26,0 вольт. На первый взгляд этого достаточно для зарядки аккумулятора. На самом деле это не всегда так.

В «солнечный полдень» черный кремний в солнечной батарее нагревается. Если температура панели превысит 25 ° C, то ее выходное напряжение уменьшится по сравнению с номинальным — 1,0 вольт на каждые 12 ° — 15 ° C роста температуры. При температуре поверхности 50 ° C выходное напряжение панели с 30 ячейками упадет до 13,3 вольт. У панели с 33 ячейками до 14,8 вольт, а у панели с 36 ячейками — до 16,3 вольт.

Гибкие солнечные панели установлены на крыше катера. Модули изготовлены под заказ, поэтому точно вписались в место, выбранное заказчиком

Скорость заряда аккумуляторов, подключенных к солнечной батарее с 30 ячейками будет постоянно снижаться, поскольку напряжение на аккумуляторах будет расти, и такая панель не зарядит полностью аккумулятор.

Солнечные батареи, уложенные горизонтально, нагреваются сильнее — между их задней стороной и основанием на котором они установлены нет воздушного зазора. Чтобы компенсировать повышенное падение напряжения, в них увеличивают количество ячеек. В некоторых моделях до 42 штук.

Во время установки в цепь панели иногда добавляют блокирующий диод в дополнение к шунтирующим диодам, описанным ранее. На блокирующем диоде дополнительно падает около 0,6 вольт. Из-за этого 30-элементная панель с блокирующим диодом, особенно в жарком климате, плохо заряжает аккумуляторы. Эффективность панели с 33 ячейками также снижается по мере роста напряжения аккумуляторной батареи.

В южном климате для зарядки аккумуляторов в панели должно быть, как минимум 30 ячеек. 33-элементная солнечная батарея будет давать достаточное напряжение для зарядки, но запас на потери (падение напряжения на диодах, в кабелях, соединениях и плохой солнечный свет) у нее будет небольшой. Панель с 36 ячейками справится с зарядкой аккумуляторов практически в любой ситуации. В умеренном климате панель с 33 ячейками выдает подходящее для зарядки аккумуляторов напряжение всегда, кроме самых жарких дней.

Для эффективной зарядки аккумулятора в жарком климате минимальное напряжение панели (при стандартных условиях испытания), после вычитания падения напряжения на диодах должно составлять 16,0 — 17,0 В. В умеренном климате — 15,0 до 16,0 вольт.

Регуляторы напряжения солнечных батарей

По мере заряда аккумулятора саморегулируемая солнечная панель, состоящая из 30 ячеек уменьшает выходной ток. Если учесть нагрев панели в жарком климате, падение напряжения в блокирующем диоде и на других участках цепи, саморегулирующаяся солнечная панель будет плохо заряжать аккумуляторы независимо от ее номинальной мощности. Для эффективной зарядки требуется больше ячеек.

Pricing table with an Table ID of «classic-blue_11» is not defined.

Но панель, которая поддерживает напряжение, подходящее для зарядки аккумуляторов, медленно перезарядит их, в то время, пока катер или яхта не используются. Критическая точка возникает, если номинальная мощность панели при напряжении 14,0 вольт превышает 0,5% от емкости аккумуляторной батареи (например, панель с выходным током 1 А, подключена к аккумулятору емкостью 200 Ач).

Если мощность панели выше, необходимо установить регулятор напряжения или отключать панель, когда лодка остается на стоянке. Из-за чрезвычайной чувствительности литий-ионных аккумуляторов к перезарядке любая солнечная панель, используемая с любой литий-ионной батареей, всегда должна иметь регулятор напряжения.

Дешевый регулятор состоит из простой цепи, измеряющей напряжение, и реле. Когда напряжение достигает заданного значения, реле срабатывает и отключает солнечную батарею от аккумуляторов. Другие регуляторы переключают выход солнечных панелей на резистор (шунтирующий регулятор) или на нагрузку, например, водонагреватель (регулятор переадресации).

Более сложные регуляторы напряжения солнечных батарей имеют многоступенчатые программы зарядки аккумуляторов и отслеживают максимальную мощность(MPPT). Некоторые модели отключают аккумулятор, как только в цепи появляется отрицательный ток и заменяют таким образом блокирующий диод. Для выравнивания жидко-кислотных или AGM аккумуляторов предусматривается режим кондиционирования. Один из способов его активации — отключение регулятора и зарядка аккумуляторной батареи при полном напряжении солнечной панели.

Солнечные контроллеры MPPT

Регулятор с отслеживанием точки максимальной мощности – это расширенная версия шунтирующего регулятора с широтно-импульсной модуляцией. MPPT контроллер – это DC-DС конвертер. Он состоит из инвертора, преобразующего постоянное напряжение солнечной панели в высокочастотное переменное. Трансформатора, изменяющего это напряжение и выпрямителя, преобразующего переменное напряжение трансформатора обратно в постоянное.

Зачем нужно такое сложное устройство? Выходное напряжение солнечной панели определяется типом заряжаемого аккумулятора. Однако солнечная батарея работает с максимальной мощностью, когда ее напряжение существенно выше, чем допустимое напряжение зарядки аккумуляторов. Снижение оптимального выходного напряжения до безопасного для аккумулятора уровня уменьшает реальную мощность солнечной батареи на 25% по сравнению с номинальной. Контроллер MPPT делает выходное напряжение солнечной панели независимым от напряжения аккумулятора.

В сложных MPPT регуляторах микроконтроллер контролирует напряжение аккумулятора, уровень его заряда и выходной ток солнечной панели. На основании этих данных регулятор устанавливает выходное напряжение панели, так, чтобы ее мощность была максимальной при этом конкретном наборе условий. Для достижения желаемого результата используется цепь управления в преобразователе постоянного тока.

Установка солнечных батарей

Существует четыре типа морских солнечных батарей, изготавливаемых специально для катеров и яхт:

  • жесткие стеклянные панели с алюминиевым каркасом
  • полугибкие панели
  • гибкие ультратонкие солнечные панели;
  • очень гибкие, сворачиваемые аморфные панели

Полугибкие солнечные панели проще установить, они не требуют сложных приспособлений для монтажа и гораздо легче жестких. Если панели изготавливаются под заказ, то их можно сделать практически любого размера и разместить там, где это удобнее всего

У жестких монокристаллических и поликристаллических панелей самая низкая стоимость 1 ватта вырабатываемой мощности, и максимальная мощность для данной площади. Однако установка этих панелей обходится дороже всего, так как приходится использовать жесткое крепление, защищающее панели от повреждения. Жесткие панели работают с максимальной мощностью когда они установлены на кронштейнах за кормой. Однако в этом случае солнечные батареи становятся уязвимыми для волн и могут быть повреждены при швартовке. Еще одно хорошее место -верхняя часть рулевой рубки.

Полугибкие поликристаллические панели устанавливают на верхнюю часть кабины и другие изогнутые поверхностях. Аморфные силиконовые панели располагают на любой поверхности, а при необходимости сворачивают и убирают для хранения. Во всех случаях потери на нагрев будут меньше, если под солнечной панелью организован воздушный зазор.

Подключение солнечных батарей к аккумулятору

Учитывая, что солнечные батареи сильно чувствительны даже к небольшим падениям напряжения, при монтаже необходимо использовать кабель и терминалы морского качества. Контакты на панели уязвимы для коррозии и их необходимо полностью герметизировать. Над палубой не должно быть никаких дополнительных соединений – один кусок кабеля прокладывают до уплотнения в палубе. Если без соединений не обойтись их выполняют внутри лодки.

Схема подключения нескольких аккумуляторов для зарядки от солнечных батарей. Используется бистабильное реле Sterling Power. Обычное реле потребляет в замкнутом состоянии ток до 0,5 А и может свести на нет работу солнечных панелей. Бистабильное реле потребляет ток только во время включения — 0,5 мА.

Токонесущую способность кабеля получают умножив ток короткого замыкания панелей на 1,25. Затем по таблице подбирают сечение кабеля с учетом 3% падения напряжения.

Если панель подключают непосредственно к аккумулятору для поддерживающей зарядки, то как можно ближе к аккумулятору устанавливают предохранитель. Без него любая неисправность в проводке приведет к короткому замыканию аккумулятора и, возможно, пожару.

Если часть панели может попасть в тень, то вместо одной большой лучше использовать комплект из нескольких солнечных батарей меньшего размера, рассчитанных на тоже напряжение, но соединенных параллельно. В этом случае попавшая в тень панель уменьшит выход, но не повлияет на остальные в цепи. Затенение части большой панели снизит выходную мощность всей батареи.

Если на катере или яхте организована 24-вольтовая электрическая система, то соединять две 12-вольтовые солнечные батареи последовательно неправильно. Затенение любой области на любой панели повлияет на обе. Лучше соединить их параллельно, получить на выходе 12 вольт и использовать DC-DC конвертер для повышения напряжения до 24 вольт. В этом случае одна панель может полностью оказаться в тени, но это не окажет влияния на вторую.

Несколько аккумуляторов

Некоторые системы раздельной зарядки используют диодные изоляторы которые уменьшают напряжение на 0,6 вольт. Если солнечная батарея используется для зарядки нескольких аккумуляторов в системе с раздельной зарядкой, ее необходимо установить до разделительных диодов. Падение напряжения на диодах в этом случае необходимо учитывать при расчете выходной мощности панели.

Для обслуживания нескольких аккумуляторных групп на яхтах устанавливают зарядные устройства с двумя или тремя выходами. Некоторые модели солнечных регуляторов напряжения также имеют несколько выходов, позволяя заряжать две аккумуляторных батареи без дополнительных диодов или реле. Но такие устройства мало распространены и стоят дороже. Устройство развязки установленное между аккумуляторами, позволяет заряжать несколько аккумуляторных батарей одновременно без падения напряжения. Лучше использовать бистабильное реле, которое в замкнутом состоянии не потребляет ток и не снижает зарядную способность солнечных батарей.

Задайте вопрос,

и получите консультацию по лодочным электромоторам, аккумуляторам или зарядным устройствам для катера или яхты

Источник

Читайте также:  Солнечные панели во сколько обойдется
Оцените статью