Система ориентации солнечной батареи для чего

Солнечные трекеры

Эффективность солнечных электростанций любого типа напрямую зависит от ориентации на солнце поверхностей панелей или отражающих зеркал. Обеспечить их оптимальное положение относительно светила помогают специальные конструкции – солнечные трекеры. Чем больше степеней свободы имеет поворотное устройство, и чем выше уровень его автоматизации, тем производительнее окажется ваша СЭС.

Общие сведения

Конструкция трекера универсальна и может управлять разворотом:

  • модульных полупроводниковых фотоэлектрических батарей;
  • параболических зеркал, предназначенных для фокусировки лучей на двигателе Стирлинга или нагревательном баке;
  • оптических устройств линзового типа;
  • прочих систем на базе PV, CPV, HCPV или CSP улавливателей излучения.

В зависимости от технологических возможностей механизма, трекер для солнечных панелей обеспечивает ориентацию рабочих поверхностей на солнце предельно близко к идеальным 90°. В бюджетных моделях периодическое изменение угла наклона приходится делать вручную. Устройства premium класса изменяют ориентацию автоматически, в режиме реального времени.

Стандартный трекер для солнечных батарей включает следующие комплектующие:

  1. Несущую конструкцию. Исполняется в виде поворотного механизм на прочной опоре. Вращение может производиться в горизонтальной и вертикальной плоскостях.
  2. Устройство позиционирования. Отвечает за управление подвижными механизмами, в технической документации обозначенными как актуаторы.
  3. Блок систем безопасности. Электронная часть комплекса. Защищает систему от перегрузок, перепадов напряжения, ударов молнии и пр. Модели элитного класса оснащаются встроенной миниатюрной метеостанцией, которая при начинающихся сильных ветрах, снегопадах и ливнях дает команду на разворот модулей в безопасное положение.
  4. Блок управляющих систем. Обеспечивает возможность удаленного управления системой с любого электронного гаджета, на котором установлено соответствующее ПО.
  5. Система навигации. Обычно присутствует в трекерах на мобильных, способных перемещаться платформах. Предназначается для изменения данных о новом местоположении конструкции – географических параметров широты и долготы.
  6. Инвертор. Выполняет функцию преобразователя, в том числе и для подачи питания 220V на электродвигатели самого трекера.
Читайте также:  Калькулятор выработки солнечной панели

Примечание: Уровень технологичности трекера выбирается в зависимости от стоящих перед СЭС задач. Ввиду высокой стоимости оборудования использование подобных систем в маломощных системах экономически нецелесообразно.

Солнечный трекер – принципиальные характеристики

Обязательным набором требований к трекерам любого класса являются:

  • большой запас статической и динамической прочности, достаточный для обеспечения устойчивости конструкции при сильных ветрах, граде, ливнях и песчаных бурях;
  • максимальная устойчивость к коррозии;
  • долговечность и высокое качество поворотных механизмов, особенно частей, подвергающихся трению.

Для наиболее крупных систем желательно наличие встроенных метеостанций. Это даст безусловную гарантию автоматического разворота модулей значительного размера в безопасное положение – торцевой частью к направлению ветра.

Разновидности трекеров для солнечных панелей

Ввиду широкого диапазона спектра требований к этим дорогостоящим установкам, их ассортимент достаточно велик. Уровень технической оснащенности и «продвинутости» трекеров всегда подбирается под конкретные цели, с учетом финансовых затрат. Экономическая целесообразность их приобретения рассчитывается просто – как соотношение средств на приобретение к росту производительности станции, умноженному на стоимость киловатта. Если затраты оказываются меньше потенциальной прибыли, приобретение имеет смысл.

Трекеры одноосные

Отсутствие второй оси делает эту категорию менее дорогостоящей. Направление вращения произвольно и определяется индивидуально, в зависимости от места строительства СЭС.

Существует четыре вида таких трекеров:

  • по вертикали – VSAT;
  • по горизонтали – HSAT;
  • вокруг наклонной оси – TSAT;
  • полярное вращение, относительно стороны света – PASAT.

Управляющие алгоритмы носят название SPA (Solar Position Algorithm), и встраиваются в программное обеспечение.

Оптимальная единственная ось определяется по нескольким характеристикам.

1. Вертикальная – Vertical Single Axis Tracker (VSAT). Применяется преимущественно для станций, расположенных в высоких широтах, от 50° северной широты и выше. Вращение осуществляется с Востока на Запад. Выбор связан с низким расположением солнца и позволяет избежать взаимного затенения соседних солнечных блоков, по мере движения светила вдоль горизонта/

2. Горизонтальная – Horizontal Single Axis Tracker (HSAT). Солнечные трекеры с таким направлением вращения оптимальны в низких широтах. Панели или зеркала на протяжении суток медленно поворачиваются с Севера на Юг. Во избежание частичного затенения трубные крепления модулей с системами HSAT необходимо монтировать строго параллельно.

3. Наклонная – Tilted single axis tracker (TSAT). Чаще всего применяется в электростанциях, расположенных на местностях с небольшим уклоном или ступенчато. Выбор направления обусловлен той же причиной – недопустимостью падения тени даже на незначительную часть любой батареи.

4. Полярная – Polar aligned single axis trackers(PASAT). Для средних широт данная конструкция с одной осью признана оптимальной. Поскольку система управления ориентируется на положение Полярной звезды, то угол наклона модулей всегда совпадает с географической широтой местности.

Двухосные солнечные трекеры

Поворотные механизмы с двумя степенями свободы обеспечивают солнечным панелям максимально точную ориентацию на солнце. Это повышает удельную производительность электростанций на 25-40%, и для систем большой мощности полностью оправдывает дополнительные расходы.

Существует две модификации двухосных конструкций трекеров:

  1. Tip-Tilt Dual Axis Tracker (TTDAT). Основой механизма является крупный шаровой подшипник и удлиненная сверхпрочная опора. Вращение производится вдоль горизонтальной и вертикальной осей. Управление в большинстве случаев электронное.
  2. Azimuth-Altitude Dual Axis Tracker (AADAT). Наиболее современный и функциональный вариант с азимутной базовой ориентацией. Оригинальным конструктивным решением служит замена шарового механизма поворота на кольцо, с размещением последнего на отдельной платформе. Преимуществом данной разновидности следует назвать возможность монтажа на солнечном трекере типа AADAT сразу значительного числа батарей. Вынужденный недостаток – необходимость увеличивать расстояние между соседними опорными конструкциями из-за большого диаметра кольца. Смена ориентации панелей осуществляется исключительно электроникой.

Варианты управления механизмов позиционирования

Таковых существует три – ручной, автоматический и полуавтоматический способы.

1. Ручное управление

Бюджетные, преимущественно одноосные модели трекеров для солнечных батарей предполагают механическое управление поворотными механизмами. Осуществляется оно полностью вручную, либо с помощью конструкций, называемых актуаторами. В отличие от изменения угла наклона панелей простым поворотом рук, актуаторы управляются специальными тумблерами. При большом количестве панелей это кратно экономит время и не требует применения физической силы. Полностью ручное изменение позиции солнечных панелей производится 2-4 раза в год, обычно весной и осенью. Система с актуаторами применяется для корректировки значительно чаще, примерно раз в месяц.

2. Автоматическое управление

Премиальный класс использует более дорогостоящие, но максимально эффективные автоматические системы изменения позиционирования. Специализированное программное обеспечение осуществляет управление по алгоритму SPA (SolarPosition Algorithm), в on-line режиме отслеживая положение солнца по ниже приведенной схеме.

Информацию о перемещении светила, исполнительные механизмы получают в результате математического расчета основанных на координатах расположения трекера. Преимущество автоматических систем заключается в постоянном определении идеальной позиции панелей без участия человека.

3. Полуавтоматическое управление

Применяется с целью экономии средств на дорогостоящую электронику и ПО. Вместо защищенного компьютерного блока используется достаточно простой логический контроллер с таймером. Время изменения позиции выставляется владельцем вручную.

Принципы выбора трекеров для солнечных панелей

Основным правилом выбора трекерной конструкции является её максимальная целесообразность для конкретных индивидуальных условий – мощности станции, места её расположения, наличия центральной сети и себестоимости элетроэнергии.

В качестве общих рекомендаций можно предложить:

  1. Одноосный HSAT с вращением по горизонтали – для низких широт и сравнительно маломощных СЭС. Эти системы не слишком дороги, и максимально эффективны во 2-й половине дня, при увеличенном энергопотреблении.
  2. Одноосный VSAT с вращением по вертикали – в северных регионах, где поворот за солнцем производится по направлению Восток-Запад.
  3. Двухосные TTDAT и AADAT – для крупных электростанций, где прибыль от минимального повышения производительности с запасом перекрывает затраты на покупку солнечных трекеров.

Похожие статьи

Новые технологии в производстве солнечных батарей. Будущее уже тут.

Применяя инновационные решения, в производстве солнечных модулей, постоянно происходят различные улучшения эффективности, уменьшения влияния затенения и повышения надежности, при этом несколько производителей в настоящее время дают гарантию производительности до 30 лет. Учитывая все новые доступные варианты выбора, стоит провести некоторые исследования, прежде чем инвестировать в солнечную установку. В нашей полной обзорной статье о солнечных панелях мы расскажем, как выбрать надежную солнечную панель и на что обратить внимание.

Из чего делают солнечные батареи: особенности строения различных поколений панелей

До недавних пор на вопрос «из чего делают солнечные батареи» существовал всего один ответ – из кремниевых ячеек в жесткой раме с толстым защитным стеклом. Сегодня ситуация кардинально изменилась, хотя панели на основе кремния по-прежнему занимают бОльшую часть мирового рынка.

Если вам сложно определиться с выбором, напишите нам через форму обратной связи

Если вы не нашли то, что искали, воспользуйтесь поиском по магазину

Товары со скидками, ограниченное предложение, успейте купить выгодно!

Источник

Солнечные трекеры

Солнечный трекер — это система, предназначенная для ориентации на Солнце рабочих поверхностей систем генерирующих электричество, либо систем концентрирующих (генерирующих) тепловую энергию, установленных на трекере.

Точная ориентация рабочих поверхностей систем на Солнце необходима для достижения их максимальной производительности. При этом задача трекера — уменьшить угол падения солнца на рабочую поверхность солнечных панелей (PV- модулей, СPV-концентрированных фотоэлектрических модулей, CSP систем, HCPV систем, параболических отражателей и др.).

Состав солнечного трекера

Необходимость полной комплектации трекера не всегда экономически целесообразна, зависит от вида трекера, назначения, и других факторов, поэтому в практике часто многие указанные выше составляющие элементы трекера отсутствуют.

Виды солнечных трекеров

Виды солнечных трекеров описаны в статье «Классификация трекеров» на нашем сайте. Ознакомиться можно здесь.

Системы ориентации солнечных батарей

Задача трекера — установить углы наклона рабочей поверхности нагрузки, сориентировав, её строго на солнце. Проще говоря, солнечные лучи должны падать перпендикулярно плоскости солнечной батареи.

Такой ориентации можно добиться несколькими способами:

Переориентировать систему можно вручную, либо, управляя актуаторами, подавая управляющие сигналы с помощью переключателей. Но такой способ приемлем в основном для сезонной ориентации трекеров, когда на какой то период времени выставляется соответствующий угол наклона (на картинке данный угол обозначен как Zenith (зенитный угол наклона солнца (Рис 1.)). Точность ориентации при этом невелика, постоянно оператор не может находиться у трекера, поэтому данный способ распространён мало, но для сезонной ориентации малобюджетных систем он вполне подходит.

Управление движением трекера по Азимутальному и Зенитному углам возможно устройством управления, в состав которого входит таймер. При этом актуаторы начинают свою работу по суточной программе таймера (при необходимости, и по годовой программе). Точность ориентации при этом не велика, так как солнце в течение года постоянно меняет время, место восхода и захода, зенитный угол.
К примеру, летом в наших широтах зенитный угол мал, а зимой солнце идёт по горизонту и зенитный угол велик. Данный способ приемлем для недорогих систем.

Наиболее эффективным стал способ управления актуаторами по программе, которая в определенные интервалы времени рассчитывает местоположение солнца. По внутренним часам устройства программа на блок управления будет выдавать информацию о значении Азимутального (Azimuth) и Зенитного(Zenith) углов (Рис.1), с учётом местоположения трекера (широта, долгота, высота над уровнем моря), после чего исполнительным устройством производится соответствующая переориентация трекера в расчётное положение. Данная программа для расчёта местоположения солнца, называется — SPA (Алгоритм солнечной позиции).

Устройства управления трекерами могут быть выполнены на защищённых компьютерах, PLC — Программируемых логических контроллерах, либо в виде отдельных законченных устройств, программируемых поставщиком при поставке трекера, с привязкой к местности своего изделия. Группа трекеров может управляться одним компьютером, что снижает себестоимось электростанции.

UST — Юрий Студёнов

Приобрести солнечный трекер вы можете на нашем сайте. Выбирайте одноосевые и двухосевые трекеры производства компании «ЮСТ».

Источник

Ориентация солнечных панелей

Только малая доля солнечного излучения достигает поверхности земли.

1. прямая 2. поглащение 3. отражение 4. непрямая

Солнечный свет проходит свой путь от Солнца до Земли по прямой линии. Когда он достигает атмосферы, часть света преломляется, а часть достигает земли по прямой линии. Другая часть света поглощается атмосферой. Преломленный свет — это то, что обычно называется диффузной радиацией, или рассеянным светом. Та часть солнечного света, которая достигает поверхности земли без рассеяния или поглощения — это прямая радиация. Прямая радиация — наиболее интенсивная.

Солнечные модули производят электричество даже когда нет прямого солнечного света. Поэтому, даже при облачной погоде фотоэлектрическая система будет производить электричество. Однако, наилучшие условия для генерации электроэнергии будут при ярком солнце и при ориентации панелей перпендикулярно солнечному свету. Для местностей северного полушария панели должны быть ориентированы на юг, для стран южного полушария — на север.

Влияние различных световых условий на выработку фотоэлектрических модулей (в % от полной мощности)

Условие

% от «полного» солнца

Яркое солнце — панели расположены перпендикулярно солнечным лучам

За оконным стеклом, один слой, стекло и модуль перпендикулярны солнечным лучам

За оконным стеклом, 2 слоя, стекло и модуль перпендикулярны солнечным лучам

За оконным стеклом, один слой, стекло и модуль под углом 45° солнечным лучам

Искуственный свет в офисе, на поверхности письменного стола

Искуственный свет внутри яркого помещения (например, магазин)

Искуственный свет внутри жилого помещения

Солнце двигается по небу с вотока на запад. Положение Солнца на небосклоне определяется 2-мя координатами — склонением и азимутом. Склонение — это угол между линией, соединяющей наблюдателя и Солнце, и горизонтальной поверхностью. Азимут — это угол между направлением на Солнце и направлением на юг (см рисунок справа).

Следует также учитывать, что направление на магнитный юг (т.е. по компасу) не всегда совпадает с направлением на настоящий юг. Существуют истинный и магнитный полюсы, не совпадающие между собой. Соответственно этому есть истинный и магнитный меридианы. И от того и от другого можно отсчитывать направление на нужный предмет. В одном случае мы будем иметь дело с истинным азимутом, в другом — с магнитным. Истинный азимут — это угол между истинным (географическим) меридианом и направлением на данный предмет. Магнитный азимут —угол между магнитным меридианом и направлением на данный предмет. Понятно, что истинный и магнитный азимуты отличаются на ту же самую величину, на которую магнитный меридиан отличается от истинного. Эта величина называется магнитным склонением. Если стрелка компаса отклоняется от истинного меридиана к востоку, магнитное склонение называют восточным, если стрелка отклоняется к западу, склонение называют западным. Восточное склонение часто обозначают знаком «+» (плюс), западное — знаком «—» (минус). Величина магнитного склонения неодинакова в различной местности. Так, для Московской области склонение составляет +7, +8°, а вообще на территории России оно меняется в более значительных пределах.

На практике, солнечные панели должны быть ориентированы под определенным углом к горизонтальной поверхности. Около экватора солнечные панели должны располагаться под очень маленьким углом (почти горизонтально), для того, чтобы дождь смывал пыль и грязь с фотоэлектрических модулей.

Небольшие отклонения от этой ориентации не играют существенной роли, потому что в течение дня солнце двигается по небу с востока на запад.

Пример

Доля производства энергии фотоэлектрической системой при наклоне 45 градусов, для широты местности 52 градуса северной широты.

Выработка максимальна (100%) когда панели расположены под углом 36 градусов и ориентированы на юг. Как видно из таблицы, разница между направлениями на юг, юго-восток и юго-запад незначительна.

Угол наклона солнечных батарей

Солнечные панели наиболее эффективно работают, когда они направлены на солнце и их поверхность перпендикулярна солнечным лучам. Солнечные панели обычно располагаются на крыше или поддерживающей конструкции в фиксированном положении и не могут следить за положением солнца в течение дня. Поэтому, обычно солнечные панели не находятся под оптимальным углом (90 градусов) в течение всего дня. Угол между горизонтальной плоскостью и солнечной панелью обычно называют углом наклона.

Вследствие движения Земли вокруг Солнца, имеют место также сезонные вариации. Зимой солнце не достигает того же угла, как летом. В идеале, солнечные панели дожны располагаться летом более горизонтально, чем зимой. Поэтому угол наклона для работы летом выбирается меньше, чем для работы зимой. Если нет возможности менять угол наклона дважды в год, то панели должны располагаться по оптимальным углом, значение которого лежит где-то посередине междну оптимальными углами для лета и зимы. Для каждой широты есть свой оптимальный угол наклона панелей. Только для местностей около экватора солнечные панели должны располагаться горизонтально.

Обычно принимается для весны и осени оптимальный угол наклона равным значению широты местности. Для зимы к этому значению прибавляется 10-15 градусов, а летом от этого значения отнимается 10-15 градусов. Поэтому обычно рекомендуется менять дважды в год угол наклона с «летнего» на «зимний». Если такой возможности нет, то угол наклона выбирается примерно равным широте местности.

1.солнце зимой
2.солнце летом

Оптимальный угол наклона зимой и летом

Небольшие отклонения до 5 градусов от этого оптимума оказывают незначительный эффект на производительность модулей. Различие в погодных условиях более влияет на выработку электричества. Для автономных систем оптимальный угол наклона зависит от месячного графика нагрузки, т.е. если в данном месяце потребляется больше энергии, то угол наклона нужно выбирать оптимальным именно для этого месяца. Также, нужно учитывать, какое есть затенение в течение дня. Например, если с восточной стороны у вас дерево, а с западной все чисто, то, скорее всего, имеет смысл сместить ориентацию с точного юга на юго-запад.

Источник

Оцените статью