- Аккумуляторы и батареи
- Схема зарядного устройства для литиевых аккумуляторов
- Схема подключения литиевых аккумуляторов
- Схемы балансиров для литиевых аккумуляторов
- Схема светодиодов для контроля разряда литиевых аккумуляторов
- Вывод
- Видео
- Блок питания с литиевым аккумулятором для портативных устройств
- Схема принципиальная БП на ADP2291
- Источник питания 3,3 В с литий-полимерным аккумулятором
- Блок питания 5 В с литий-полимерным аккумулятором
- Схема питания с литий-полимерным аккумулятором
Аккумуляторы и батареи
Информационный сайт о накопителях энергии
Схема зарядного устройства для литиевых аккумуляторов
Литиевые аккумуляторы изготавливаются с использованием различных ионных компонентов, с неизменным присутствием иона лития. Другим составляющим может быть сухой ионит с кобальтом, фосфатом железа, комплекс никель-кобальт алюминий и прочие. Подбор активных составов продолжается. В зависимости от гальванической пары меняется мощность аккумуляторов, их напряжение и емкость, но способы сбора в батареи с обвязкой для всех одинаковы.
Схема подключения литиевых аккумуляторов
Установка литиевой батареи решает разные задачи. В случаях, когда нужно иметь токовую нагрузку, измеряемую десятками ампер используют высокотоковые элементы. Это касается ручного инструмента, тяговых батарей для транспортировки. Средние нагрузки лежат на ноутбуках, фотоаппаратах, фонарях.
Рассмотрим высокотоковые аккумуляторы на основе литий-ионных банок с номинальным напряжением 3,7 В. Они могут иметь разные размеры, емкость, но напряжение будет только 3,7. Изготовлены элементы:
- катод из алюминиевой фольги, на которую нанесен мелкодисперсный графит;
- анод из медной подложки, на которую нанесен LiCoO2:
- сепаратор, ячеистый состав пропитан неводным раствором соли Li.
Именно такие комплектующие используют в цилиндрических элементах, аккумулятор называют литий-ионным. Чаще всего схема питания шуруповертов, ноутбуков, фонарей, биноклей изготовлены с применением литиевых аккумуляторов форм-фактора 18650. Элемент имеет в длину 65 мм, диаметр 18 мм. Напряжение рабочее 3,0-4,2 В. Относится в высокотоковым, то есть может отдавать ток силой до 10 С.
Для питания инструмента большей мощности необходимо соединять последовательно несколько банок, по расчету. При этом емкость измеряется по самому слабому элементу.
Для повышения емкости нужно использовать параллельное соединение. Банки, соединенные одинаковыми полюсами суммируют емкость. Если нужно поднять емкость и напряжение, используют комбинирование. Соединяют группы банок параллельно. Потом каждый комплект соединяют последовательно.
Для шуруповертов с рабочим напряжением 12,14,18 В используется последовательная схема литиевого аккумулятора. Зная, что отдельные элементы не должны перезаряжаться выше 4,20 В, разряжаться ниже 2,5 В, требуется обеспечить равномерное напряжение во всех банках и защиту от опасного для них напряжения. Батарея может быть собрана из защищенных аккумуляторов. Тогда на них есть маркировка «protected» («защищенные»). В корпусе имеется плата, отключающая элемент при достижении критичных параметров.
Защищенный цилиндр на 2 мм длиннее стандартного, незащищенного и немного толще, за счет дополнительной обертки. Если используются незащищенные литиевые аккумуляторы, в схему заряда литиевых аккумуляторов устанавливается плата защиты MBS, рассчитанная на максимальную токовую нагрузку, количество банок. Часто там же встроен балансир.
Схемы балансиров для литиевых аккумуляторов
В чем заключается балансировка при сборке батареи последовательно? Когда соединение банок идет противоположными полюсами, напряжение суммируется. Ток протекает одинаковый. По разным причинам разница в емкости может немного отличаться. Но если не поставить преграду, самая малая банка переполнится, то есть перезарядится. Это плохо. При работе ток отбирается в равных количествах. Банка, у которой емкость немного ниже, разрядится настолько, что может выйти из строя, пока другие элементы сборки отдают энергию до нормы.
Балансир представляет схему, которая создает препятствия для прохождения тока в заряженную батарею, направляя ее через дополнительные сопротивления, резисторы. Балансир включает стабилитрон TL431A и транзистор односторонней прямой проводимости BDI 40
Отличные балансиры включены в схему зарядных устройств для литиевых аккумуляторов, которыми широко пользуются. Их маркировка Turnigy Accucel-6 50W 6A и iMAX B6.
Перед вами простая и понятная схема балансировки литиевых аккумуляторов, которую можно сделать самостоятельно.
Схема светодиодов для контроля разряда литиевых аккумуляторов
Актуально узнать, когда аккумулятор сядет. Разряжать литиевые батареи до 2,5 В не стоит, будут трудности с предзарядом. Резкое мигание светодиода послужит заметным аварийным сигналом.
Несложная схема с применением монитора напряжения еще и компактная. Неоспоримое достоинство – низкое потребление энергии. При севшей батарее это важно. Хорошо с задачей справится мигающий светодиод L-314.
Можно купить готовый прибор –MAX9030. Схема компоновки представлена. При понижении напряжения до 3,0 В начинает вспыхивать ярко светодиод с длинным интервалом. В спящем режиме расходуется 50 наноампер (10 -9 ), при вспышках 35 мкА.
Вывод
Для каждого устройства можно составить литиевую батарею, отвечающую запросам. Но необходимо подобрать параметры комплектующих в соответствии с видом литиево-ионных аккумуляторов. Марганцевые имеют напряжение 4 В, кобальтовые 3,7 В, а железо-фосфатные 3,3 В. Собирая батарею, нужно брать элементы одного вида, лучше из одной партии.
Видео
Посмотрите ход подключения защиты и сбора батареи.
Источник
Блок питания с литиевым аккумулятором для портативных устройств
Питание портативных электронных устройств от батареек — обычное явление. В таких устройствах уже давно применяются литий-ионные или литий-полимерные перезаряжаемые элементы. Они обязаны своей популярностью очень высокой плотности накопленной энергии (
300 Втч / л) и небольшому весу, что является результатом очень благоприятного соотношения веса и энергоэффективности (200 Втч / кг в зависимости от формы). Благодаря этим параметрам получаем небольшой объем, и как следствие легкий и простой в использовании источник питания с высоким КПД. Литий-полимерные батареи также не обладают эффектом памяти, который так усложнял жизнь при использовании никель-кадмиевых или никель-металлгидридных аккумуляторов.
Недостатком этих элементов является довольно сложный процесс зарядки, за которым необходимо тщательно следить, чтобы сохранить долговечность и параметры элемента в течение более длительного периода времени. Зарядка многоэлементных батарей также затруднена, для чего необходимо сбалансировать процесс зарядки отдельных составляющих ячеек.
По этим причинам решения с использованием только одного литий-полимерного элемента очень популярны (например в мобильных телефонах). Некоторые производители полупроводников, включая ADI, ST, TI, MAXIM, LT, производят специальные интегральные схемы для зарядки литий-полимерных аккумуляторов для таких решений.
Но использовать литий-полимерные батареи просто так не получится. Требуется интеграция в схему питания всех элементов зарядки и проверки состояния батареи, а также преобразования постоянного напряжения до нужного уровня.
Выбранные элементы были под номинальное напряжение 3,7 В, полностью заряженное напряжение 4,2 В, емкость 2200 мАч и максимальный ток нагрузки 2 С.
Расчетные были следующими:
- Схема должна безопасно поддерживать полный цикл зарядки одного литий-полимерного элемента в последовательности CC / CV.
- Источником питания в процессе зарядки будет порт USB (5 В / 500 мА) или блок питания мобильного телефона (5,7 В / 800 мА).
- Встроенное зарядное устройство должно гарантировать что источник питания подключен и идет процесс зарядки. Он также должен позволять безопасно оставлять схему подключенной в течение любого времени после окончания зарядки.
- Система зарядки должна по желанию позволять выбирать такие параметры, как максимальный ток зарядки и максимальное время; предварительно выбранные параметры: 500 мА и 4 ч.
- Аккумулятор должен быть защищен от чрезмерного тока разряда (> 2 A).
- Влияние зарядного устройства на саморазряд элемента должно быть незначительным.
- Схема должна позволять отключать нагрузку с помощью логического (цифрового) сигнала.
- Преобразователь (регулятор) напряжения должен обеспечивать выходное напряжение 5,0 В ± 5% при максимальном токе нагрузки 1000 мА.
- Должна быть предусмотрена возможность измерения напряжения батареи и выходного напряжения с помощью внешней системы контроля.
Схема принципиальная БП на ADP2291
После анализа потребностей и доступности элементов для проекта, выбор пал на интегральные микросхемы от Analog Devices Inc: ADP2291 зарядное устройство и ADP1610 импульсный преобразователь. Они относительно дешевы и доступны в продаже. Схема разработанного решения представлена на рисунке ниже.
Выходной каскад включает в себя удвоитель, который позволяет получить дополнительное напряжение 9 В / 50 мА. Решение было протестировано и результаты подтвердили, что все проектные предположения выполнены.
Печатная плата разработанная для использования двухстороннего монтажа SMD, имеет размеры 52×28 мм.
Благодаря работе на частоте 700 кГц, система отличается компактной конструкцией — индуктивные элементы и фильтрующие конденсаторы имеют небольшие размеры, несмотря на большой допустимый выходной ток. Достигнутый КПД был выше 80% (в зависимости от величины тока нагрузки).
Разъединитель преобразователя напряжения на основе MOSFET-транзисторов настолько эффективно отделяет выходную цепь от аккумулятора, что даже после года хранения устройства от зарядки аккумулятора его напряжение упало всего примерно на 0,4 В (3,8 В), и схема сразу была готова к работе после включения.
Была успешно использована схема этого зарядного устройства с блоком питания 5 В / 1 А в нескольких различных проектах. А в одном из проектов возникла необходимость в питании цифровых схем на 3,3 В от аккумуляторов.
Самым простым и очевидным решением в такой ситуации было бы использование дополнительного стабилизатора, который снизил бы напряжение с 5 В до 3,3 В. Проблема в том, что такое решение снижает эффективность источника питания почти на 35%, что в случае питания от батареи является очевидным расточительством ёмкости.
Можно предположить, что изменяя значения элементов в цепи обратной связи управления напряжением, получим желаемое выходное напряжение 3,3 В. Но тут есть недостаток: преобразователь ADP1610 обычно работает в конфигурации «повышающий преобразователь», поэтому его выходное напряжение должно быть равно или превышать напряжение питания. Заряженная литий-полимерная батарея имеет напряжение 4,2–3,7 В и требует понижающего преобразователя для формирования 3,3 В.
Решением проблемы было использование конфигурации SEPIC (несимметричный первичный преобразователь индуктивности). Схема представлена на рисунке ниже.
Источник питания 3,3 В с литий-полимерным аккумулятором
В преобразователе этого типа вход и выход разделены для постоянного тока конденсатором C9. На этом этапе нужно использовать керамический конденсатор с очень низким значением ESR (паразитная индуктивность и последовательное сопротивление). Конденсатор должен иметь емкость 10 мкФ и быть неполярным — танталовые и электролитические алюминиевые конденсаторы не подходят для использования в этом месте. Этот блок питания представляется в двух конфигурациях.
Блок питания 5 В с литий-полимерным аккумулятором
Первый — это немного упрощенная версия с батареей 3,7 В / 1000 мАч. Ток зарядки в схеме был ограничен до 250 мА, схема включалась и выключалась с помощью микровыключателей (ВКЛ и ВЫКЛ) и сигнализации состояния переключения (светодиод «Power»). Схема также позволяет измерять напряжение аккумулятора.
Второе решение также обеспечивает возможность контроля напряжения батареи микроконтроллером семейства Atmel 89Cx051 и логического отключения схемы.
Схема питания с литий-полимерным аккумулятором
Подбор элементов в измерительных делителях обеспечивает возможность определения полного разряда аккумулятора путем сравнения напряжений на входах аналогового компаратора (AIN0 и AIN1) и отключения питания установкой низкого состояния на выходе P3.7.
Преобразователь формирует стабильное постоянное напряжение 5,0 В при потреблении тока в диапазоне 30-600 мА. В таком виде и использовалась схема: зарядное устройство — блок питания — нагрузка, надёжно отработав уже несколько лет.
|