Схема намотки статора ветрогенератора

Нестандартная обмотка генератора

Сейчас можно сказать 99% всех генераторов это классические генераторы с трёхфазной обмоткой и соотношением числа полюсов и числа катушек 2 к 3. То-есть если полюсов например 12 то катушек 18, если полюсов 24 то катушек 36, если полюсов 9 то катушек 12, если полюсов 6 то катушек 9. Так-же такая схема работает если наоборот соотношение 3 к 2, она обычно применяется на дисковых-аксиальных генераторах, где делают 9 катушек и 12 магнитных полюсов на дисках. Но с дисковыми всё и так понятно, там нет магнитного залипания так-как статор не содержит железа, а катушки просто залиты смолой.

Но в классических генераторах где статор железный есть магнитное залипание, которое мешает ветроколесу стартовать, и многие борются за снижение этого залипания, чтобы винт стартовал при более низкой скорости ветра. Само залипание это когда магниты на роторе притягиваются к зубцам статора и держат ротор, и чтобы его провернуть нужно приложить определённое усилие, которое измеряется в Ньютон*метр (Нм).

Ранее я уже описывал методы уменьшения залипания, где писал про скос магнитов — в этой статье Уменьшение залипания методом скоса магнитов, но сейчас я хочу более подробно разобрать один интересный метод повышения КПД генератора и уменьшения залипания. Вообще генератор можно намотать с любым количеством катушек и полюсов, и при этом он будет трёхфазный и будет так-же работать. Для расчёта такой намотки сделали сайт где можно рассчитать генератор, вот адрес сайта — http://www.bavaria-direct.co.za/scheme/calculator/

Читайте также:  Электрогенератор 15 квт мощность двигателя

Как делать расчёт генератора

Перейдя по ссылке вы увидите вот такую картину, ниже скриншот

В этой форме нужно вводить количество полюсов на роторе, и количество катушек статора.

Например в автомобильном генераторе 18 катушек и 12 полюсов на роторе, если ввести эти данные мы получим 36 залипаний и КПД генератора 0.86.

Ниже на скриншоте я отметил где какие данные указываются

1. Указывает количество залипаний ротора за один оборот, в данном случае 0.86603. Чем больше общее количество залипаний тем меньше по силе каждое залипание в отдельности, Увеличением количества залипаний общая сила притяжения магнитов как-бы распределяется по всему диаметру, и чем больше залипаний тем они слабее, по-этому ротор генератора легче стронуть.

2. Указывает КПД обмотки генератора, в данном случае 36. Соответственно чем выше число в этом поле тем выше КПД генератора в целом. При классической схеме намотки генераторов КПД 0,86, но эффективность, а значит и мощность можно увеличить.

2. Указывает схему намотки катушек, в данном случае ABCABCADCABCABCABC. Это самый сложный для понимания этап и его разберём подробнее. При классической схеме намотки катушек все катушки наматываются в одном направлении, чтобы ток тёк в одну сторону и не-было такого чтобы он двигался навстречу, иначе это уже замыкание и неправильная работа генератора, перегрев и выход из строя генератора.

На схеме видно что буквами «АВС» обозначены фазы генератора, дополнительно они выделены цветами. Как видно все буквы заглавные, значит всё катушки мотаются в одном направлении. То-есть если вы начали мотать катушки по часовой стрелке значит они все должны так наматываться, а соединятся катушки одной фазы между сабой должны (конец катушки с началом следующей). Если взять первую фазу «А» то видно что она мотается начиная с первого зуба и потом через каждые два зуба. Фаза «В» точно так-же, но начиная со второго зуба, и третья фаза «С» наматывается на третий зуб и потом через каждые два зуба.

Например всего у нас 18 катушек, то-есть по 6 штук на фазу, значит первая фаза мотается с любого первого зуба, потом вторая катушка фазы наматывается уже на четвёртый зуб, третья катушка на седьмой зуб, четвертая на 10-й зуб, пятая на 13-й зуб, и шестая на 16-й зуб. А две другие соответственно точно так-же, но начиная со второго и третьего зуба. На скриншоте видно как они соединены, только здесь ротор снаружи, а статор внутри, а вам нужно представить это наоборот. Фазы отмечены разными цветами и видно что в фазе катушки соединены последовательно, то-есть конец катушки с началом следующей и так далее.

Изменение количества полюсов и направление обмоток генератора

Но если изменить количество полюсов, например поставить 22 полюса, как на скриншоте ниже, то изменится схема намотки генератора.

Если вместо 12 полюсов на роторе сделать 20 полюсов, то генератор так-же останется трёхфазным, но поменяется размещение катушек на зубах статора, и направление намотки. Из скриншота выше видно что отмеченная красным первая фаза «А» теперь идёт подряд три зуба, и далее через шесть зубов ещё три зуба. Заглавной буквой отмечено что катушка должна наматываться в одну сторону, а прописная буква указывает что катушка должна наматываться в противоположную сторону. Если вы начали мотать первую катушку по часовой стрелке, то вторую мотаете уже против часовой стрелки.

Такая схема намотки позволяет использовать 20 магнитных полюсов на роторе. При этом как видно количество магнитных залипаний увеличилось с 36 до 180, и тем самым в 4 раза снизилось отдельное залипание, и грубо говоря залипание снизилось в четыре раза. При этом КПД генератора вырос с 86 до 94%, что очень неплохо ведь прирост целых 10%. Можно указывать любое количество полюсов и смотреть за изменением КПД генератора и магнитного залипания.

Определение ширины магнитов

По толщине магниты могут быть любые, но конечно не нужно ставить слишком толстые и мощные магниты, так-как это будет дороже, увеличится залипание, и будет переизбыток магнитного поля, которое выйдет за пределы статора и просто не будет участвовать в выработке энергии. А вот по ширине магниты нужно подбирать под конкретный генератор. Если посмотреть на скриншот то видно что магниты чуть-чуть шире зубов статора, то-есть если зуб статора шириной 10мм, то магниты шириной получаются 11 мм. Чтобы точно вычислить можно распечатать страницу с расчётом и вычислить в процентах на сколько магнит шире или уже зуба, и уже далее перенести расчёт на свой генератор. Например если магнит шире зуба на 10%, а у вас зуб шириной 7.5 мм, то прибавляете 0.75 мм и получите 8.25 мм. Значит вам нужен магнит шириной 8 мм.

Если вам что-то не понятно, то оставляйте вопросы в комментарии ниже и я отвечу вам. Тут самое главное понять в какую сторону мотать катушки и на какие зубы, а так-же усвоить что ширина магнитов берётся относительно ширины зубов статора, а отношение в процентах вычисляется визуально по рисунку. Если скажем использовать магниты шире или уже чем требуется, то нарушается вся схема и от этого может появится неравномерность залипания, залипание может наоборот стать сильнее. А КПД генератора может заметно снизится.

Источник

Как сделать ветрогенератор из автомобильного генератора

Фото моего четвёртого самодельного ветрогенератора, подробнее про него здесь — ветрогенератор своими руками

Ниже я опишу простой пример изготовления маломощного (100-300 Ватт) ветрогенератора из автомобильного генератора, который изготавливал я. ветрогенератор своими руками это вроде-бы легко, но когда начинаешь делать возникает много вопросов, и если на них не найти ответ и делать как получится, то ничего путного н выйдет.

Автомобильный генератор легко поддаётся переделке под низко-оборотный генератор для ветряка, без всяких мультипликаторов и других сложностей. Переделка заключается в перемотке статора, и переделке ротора на неодимовые магниты, делов на пару дней и генератор готов.

Для начала работы понадобится любой авто-генератор, не важно сколько зубов на статоре и от какого автомобиля генератор, можно б/у или сгоревший. Так же понадобятся неодимовые магниты, которые можно поискать в местных магазинах радиодеталей, или заказать в интернете.

Магнитов нужно набрать на 12 или 24 магнитных полюса, в зависимости от того на сколько «зубов» статор. Можно использовать или целые магниты подходящих размеров, например 25*10*6 мм, или брать более мелкие и составлять полюса чтобы заполнить всю свободную площадь на роторе. Чем больше площадь и толщина магнитов, тем мощнее в итоге получится генератор.

Но всему есть придел, и при использовании слишком толстых и мощных магнитов будет большое залипание ротора к зубам статора. А лишнее магнитное поле выйдет за пределы статора и он станет магнитится снаружи, и это магнитное поле не будет участвовать в выработке электро-энергии. В большинстве случаев хватает даже тонких магнитов 20*10*2 мм. Подробнее смотрите как делать и расчёты генераторов в разделах сайта.

Ещё понадобится медный эмаль-провод. Если вы будете использовать магниты с силой притяжения не более 4 кг, то мотать лучше проводом 0,6мм, ну а если магниты по сильнее, то можно толщиной 0,8-1 мм мотать. Чем толще провод, тем в итоге меньше сопротивление обмотки генератора, а значит выше сила тока, но толстым проводом получится намотать меньше витков, от этого будет ниже напряжение. По-этому нужно выбирать что-то среднее, чтобы и зарядка аккумулятора начиналась уже при 200-300 об/м, и мощность генератора была высокой.

К примеру генератор можно намотать проводом 0,3 мм, тогда зарядка начнётся практически сразу как только генератор начнёт вращаться, но сила тока будет очень маленькой, а если вообще не перематывать генератор , то сила тока будет большая, но напряжения не хватит для зарядки аккумулятора, так-как ветер не сможет раскрутить винт ветрогенератора до 2000-3000 об/м. Если будете мотать проводом 0,6-0,8 мм не ошибётесь, это оптимально с магнитами 25*10*6 мм / 30*10*5 мм / 30*10*4 мм и пр. При намотке в пазы нужно вкладывать витков как можно больше, чтобы не было промежутков, так войдёт больше витков, и значит напряжение будет выше. Подробнее про расчёт генератора можно прочитать здесь — Расчёт напряжения и мощности генератора

Когда магниты и провод есть можно брать ротор и идти к токарю, чтобы он проточил ротор под магниты. Ротор нужно проточить на толщину магнитов и гильзы. Гильза нужна для замыкания магнитного поля магнитов, это увеличивает мощность и эффективность использования магнитов. Толщина гильзы обычно равна толщине магнитов. Ротор просачивается, и одевается гильза, она или приваривается или заливается эпоксидной смолой.

Кстати готовьтесь к тому что токаря не любят точить роторы авто-генераторов, так-как «крабы» стучат при обработке, а это негативно сказывается на станке. Если токарь не хочет точить «крабы» ротора, то то попросите его выточить новый ротор из цельной болванки, сразу диаметром под магниты. Когда будете точить ротор, то рассчитывайте зазор между магнитами и статором и делайте его 1 мм, например статор авто-генератора от классики внутренним диаметром 89 мм, если магниты толщиной 5 мм, то скидываем 10 мм и 2 мм на зазор, и того в общем диаметр ротора должен быть меньше внутреннего диаметра статора на 12 мм.

В случае с авто-генератором магниты нужно клеить без всякого скоса, которым снижают залипание чтобы ротор страгивался при меньшем усилии. Скос приемлем для асинхронных двигателей так-как там длинный ротор, но у авто-генератора короткий ротор и чтобы добиться ощутимого снижения залипания нужно делать скос на ширину зуб+паз. На таком скосе потеряется 30-40% мощности из-за не эффективного расположения магнитов под скосом.

Магниты на ротор обычно клеят супер-клеем, а потом обматывают скотчем и заливают эпоксидной смолой, я вообще их не приклеиваю, а просто размещаю на роторе через бумажные прокладки между магнитами чтобы они не сдвигались, а потом обматываю скотчем и заливаю эпоксидной смолой.

Как перемотать статор генератора

Новая обмотка мотается не на три зуба, а каждая катушка зуб, и катушек получится не 18 шт., а 36 шт. если статор на 36 зубов. Можно делать всыпную обмотку, то-есть сначала на самодельном станочке намотать все катушки, а потом заправлять их в пазы. Но я мотаю прямо на зубы, предварительно вставляю изоляцию из плотного картона и мотаю прямо на зуб виток витку. Так получается ровнее и плотнее, правда времени надо много на этот кропотливый процесс, но так и меньше меди уходит и сопротивление генератора меньше из-за небольших лобовых частей катушек. Количество витков чем больше влезет тем лучше, чем больше меди, тем эффективнее генератор в общем.

Катушки мотаются по трехфазной схеме, все в одном направлении. Для примера если генератор на18 зубов, первая фаза 1,4,7,10,13,16 зуб, вторая 2,5,8,11,14,17 зуб третья 3,6,9,12,15,18 зуб. После намотки статор обычно пропитывают лаком, а я просто обмазываю эпоксидной смолой. Начала и концы фаз лучше вывести наружу генератора, должно быть шесть проводов, а далее уже соединять звездой или треугольником. Подробнее можно посмотреть здесь о схемах соединения Как сделать ветрогенератор из автомобильного генератора

Соединение обмоток трёх-фазного генератора

Звездой соединяется так: все начала или концы вместе, а оставшиеся три вывода на диодный мост. Звезда дает большее напряжение на тех-же оборотах в сравнении с треугольником, по-этому зарядка начинается раньше, а треугольник дает больший ток, но начало зарядки на более высоких оборотах. Разница между звездой и треугольником по току и напряжению примерно в 1.7 раза.

Треугольником соединяется так: конец первой фазы с началом второй, а конец второй с началом третьей, а конец третьей с началом первой, эти три точки на диодный мост Ларионова, это штатный мост авто-генератора.

Когда с генератором будет окончено, то-есть он работает и генерирует электроэнергию, кстати его покрутить желательно и измерить все данные. У вас должно получится при 300об/м порядка 20-30 вольт в холостую и 2-4 Ампер на АКБ. Если так, то с генератором всё в порядке. Померяйте момент страгивания ротора, если он около 0,2-0.4 Нм то всё хорошо, а если больше, то могут возникнуть проблемы со стартом винта на слабом ветре. Как сделать раму с хвостом и поворотную ось вы наверно и сами додумаете. А вот винт это дело сложное, и о нём немного по подробнее.

Изготовление лопастей ветрогенератора

Самодельные винты для ветрогенераторов небольшой мощности обычно делают из ПВХ труб 110, 160 мм. Я кстати делал ещё и из обычной оцинкованной жести диаметром до 1,2 м, но лучше трубы по прочности и простоте изготовления вроде ничего нет. Хотя можно изготовить деревянные лопасти, или стекло-пластиковые, или купить готовые подобранные под мощность и обороты генератора.

Винты для ветрогенераторов обычно рассчитывают так чтобы получить максимум мощности на определенных ветрах. От формы и геометрии лопасти сильно зависит так называемый КИЭВ (коэффициент использования энергии ветра). Но в расчёты вдаваться не будем, так-как есть уже готовый рассчитанный винт из ПВХ трубы диаметром1,5 м. На фото данные для изготовления лопастей.

Координаты для вырезания лопасти из трубы

Кстати его можно вырезать и из110-й трубы, просто в полтора раза уменьшить размеры, и винт будет прекрасно работать. Но 110-я труба имеет толщину стенки всего 3.2 мм, и на сильном ветру будет проявляться так называемый флаттер — рычание винта на больших оборотах из за прогиба лопастей, поэтому лучше делать из160-й трубы с толщиной стенки 4,9мм, с ней эффект флаттера не наблюдается.

Ниже новые фотографии моего генератора, от скуки решил поэкспериментировать с магнитами ротора, и заодно сделать фотографии ветрогенератора.

Автомобильный генератор

Автомобильный генератор

Переделка автогенератора на магниты

Самодельный ветрогенератор

Самодельный ветрогенератор

Конструкция ветряка

ветрогенератор

Далее на фото уже два моих ветряка, правда мачты и ветряки еще не покрашены.

Ветряки на даче

На этом пока заканчиваю, подробнее об этих ветряках и о других смотрите в разделах, так-же если кому нужны расчёты предлагаю далее посмотреть другие статьи.

Расчет лопастей из ПВХ труб В статье много готовых, рассчитанных винтов для выбора под ваши ветрогенераторы. А так-же таблицы расчетов. Рассчитанные винты имеют все нужные данные включая координаты лекала лопастей для вырезания из труб.

Расчет складывающегося хвоста Защита ветрогенератора от сильного ветра методом смещения ветроголовки относительно поворотной оси и складывающимя хвостом. Таблицы расчета эксель, а так же формулы и описание принципа работы данной конструкции защиты ветряка от урагана.

Расчет генератора Простой пример расчета основных параметров трехфазного генератора на постоянных магнитах. Я постарался написать как можно понятнее для начинающих процесс расчета и что к чему, от чего зависят параметры генератора.

Источник

Оцените статью