Сервоприводы для солнечных панелей

Привод для солнечных батарей

Главные рабочие элементы вышеперечисленных электростанций, это фотогальванические панели, концентраторы солнечной энергии или промышленные фокусные зеркала с парогенераторами. В любом случае, каким бы ни был основной рабочий элемент, его требуется перемещать для обеспечения оптимального угла падения солнечных лучей.

НПП «Сервомеханизмы» предлагает ознакомиться с информацией по новой линейке исполнительных механизмов линейного перемещения специально разработанных для позиционирования направляющих в фотоэлектрических панелях. Благодаря специально-разработанной конструкции, составу материалов и внутренним особенностям серии SEA, механизмы успешно применяются в установках с фотогальваническими панелями площадью от 50 до 300 м2.

Особо прочные механизмы электрические прямоходные (МЭП) серии SEA спроектированы и изготовлены для работы в жестких условиях окружающей среды. Применение специальных материалов и материалов, стойких к ультрафиолетовому излучению гарантирует долгий жизненный цикл электропривода и высокую надежность при бесперебойной работе в течение 10-25 лет.

Устройство механизма

Технические характеристики

TF — наконечник с отверстием

TS — наконечник со сферическим подшипником

Процесс сборки линейного актуатора для солнечных батарей

Корпус червячного редуктора Монтаж червячного колеса Установка червяка Монтаж фланца и крышек

Модели актуаторов

Электромеханизм с резиновым гофром Актуатор с энкодером Установка привода на цапфах Электропривод с сшитым гофром
Исполнение с монтажным фланцем и муфтой Исполнение с монтажным фланцем без муфты Электродвигатели: АС, DC, серводвигатели, шаговые Установка промежуточного червячного редуктора

Применение исполнительных механизмов

Источник

Альтернативная энергия Альтернативная энергетика, возобновляемые источники энергии, энергетические ресурсы планеты.

Солнечная автономия в глубинке. 5 часть

Существуют некоторые хитрости, позволяющие, немного модифицировав основную систему, получить больше энергии от солнца. Первая из них – следить за солнцем, а вторая – за точкой максимальной мощности солнечных батарей.

Слежение за солнцем осуществляется с помощью солнечного трекера, с которого я и начну эту статью. Следующее видео демонстирует принцип действия трекера для солнечных панелей.

После монтажа солнечного трекера выработка энергии увеличится в 1,6 раза благодаря более длительному воздействию солнца на панели, а также оптимизации угла установки солнечных панелей по отношению к солнцу. Стоимость готового солнечного трекера составит около 52 000 рублей. Поскольку он сможет удержать всего пару панелей с общей мощностью до 600Вт, окупится такая система нескоро. Но сделать такое устройство можно и самостоятельно, причем самодельные трекеры довольно популярны.

При слежении за солнцем есть следующие главные задачи:

1. Создание крепкой платформы, способной выдержать и вес самих панелей, и порывы ветра.

2. Создание механики поворота тяжелой платформы с высокой парусностью.

3. Разработка логики управления механикой для слежения за солнцем.

Итак, пункт первый. Массивы батарей лучше разместить кратно необходимому напряжению, при этом они не должны затенять друг друга.

Для трекера потребуются крепкое железо и мощный фундамент. Для управления поворотной платформой оптимально подойдут актуаторы. На следующем снимке можно рассмотреть механику управления.

Такой трекер позволит контролировать положение солнечных панелей сразу в двух плоскостях. Но при желании можно настроить управление только по горизонтали, а по вертикали изменять угол пару два раза в год (осенью и весной).

Создавая логику всей системы можно выбрать один из нескольких вариантов:

1. Следить за максимально яркой точкой.

2. Установить наклон и поворот по таймеру (для каждого дня всегда известны время восхода и захода солнца).

3. Комбинированный вариант, предусматривающий постоянство угла поворота и поиск максимальной яркости.

Для первого способа есть два решения: соорудить трекер самостоятельно или купить готовый китайский, стоимостью около 100 долларов.

Но поскольку сделать такое устройство довольно несложно любому, кто разбирается в принципах работы контроллеров, многие предпочитают сделать все самостоятельно, при этом самодельный трекер обойдется в 10 раз дешевле.

Подробности изготовления солнечного трекера можно узнать на профильном форуме, где оптимальные конструкции уже вычислены и подобрано наилучшее оборудование. Слежение за МРРТ (точка максимальной мощности солнечных батарей) Для этой цели существует два типа солнечных контроллеров. Контроллер МРРТ (Maximum Power Point Tracking) следит за солнцем с другой позиции системы. Для обьяснения привожу следующий график.

Как видно из графика, максимум снимаемой мощности будет получен в точке максимальной мощности, которая непременно окажется на зеленой линии. Это невозможно для обычного ШИМ контроллера. Используя МРРТ контроллер можно также подключить последовательно соединенные солнечные панели. Такой способ позволит ощутимо снизить потери энергии в процессе транспортировки от солнечных батарей до аккумуляторов. Экономически целесообразно устанавливать МРРТ контроллеры при мощности СП, превышающей 300-400 Вт. Вполне обоснованной будет покупка солнечного контроллера «с запасом», если только вы не создаете мощную энергосистему, которая перекроет потребности дома с избытком. Последовательно наращивая число солнечных батарей, я получил мощность 800 Вт, чего вполне достаточно для загородного дачного домика летом.

В моем примере от энергосистемы в среднем ожидается по 4 кВт*ч электрической энергии в день с апреля по август. Такого количества энергии вполне достаточно для комфорта семьи из 4 человек при условии отказа от пользования электроплитой и микроволновой печью. Мощным потребителем энергии является бойлер для подогрева воды. Для 80 литрового бойлера в частном доме потребуется как раз приблизительно 4,5кВт*ч энергии. Таким образом, создаваемая автономная система окупится хотя бы при нагреве воды.

Предыдущая статья была посвящена гибридному инвертору, позволяющему забирать энергию преимущественно от солнечных батарей, получая от сети только недостающее количество. Компания МикроАрт уже наладила выпуск МРРТ-контроллеров, которые могут быть связаны с инверторами этой же фирмы по общей шине. Поскольку гибридный инвертор МикроАрт я уже установил, этот вариант для меня особенно удобен.

Главным достоинством этого контроллера для меня стала возможность подкачки нужного количества электричества, чтобы не заимствовать энергию от аккумулятора, снижая его ресурс. Самым популярным и при этом оптимальным по соотношению напряжение/ток является Контроллер ECO Энергия MPPT Pro 200/100. Он способен поддерживать входное напряжение до 200 В и выходной ток до 100 А. Мои аккумуляторы собраны на 24 В (напряжение аккумуляторов 12/24/48/96 В), так что максимальная мощность от контроллера составит 2400 Вт, таким образом я получаю двукратный запас при наращивании солнечных батарей. Максимальная мощность контроллера – 11 кВт при 110 В на аккумуляторах (буферное напряжение).

Связь контроллера с гибридным инвертором МАП SIN Энергия Pro HYBRID v.1 24В поддерживается по шине 12С. При этом возможно мгновенное добавление мощности в случае, когда инвертор выдает информацию о повышенном потреблении энергии. Поскольку оба устройства от одного производителя – понадобилось лишь включить шнурки в нужные разьемы устройств и активировать нужные параметры.

Продолжая исследовать возможности контроллера, я обнаружил три реле, которые можно запрограммировать. Например, при солнечной погоде, если дом не потребляет электроэнергию, можно подогреть дополнительный бойлер или бассейн. Другой вариант — погода пасмурная и напряжение аккумуляторов снижено до критического уровня, инвертор может вообще отключиться, а энергия потребляется. В таком случае возможен запуск отдельного бензо/дизель генератора, для чего достаточно просто замкнуть реле. При этом в генераторе должен быть сухой контакт запуска или же отдельная система автоматического пуска – САП (другое название – АВР, Автоматический Ввод Резерва). Генератор у меня простой китайский, но стартер имеется. Поинтересовавшись автоматизацией его запуска, и выяснив, что МикроАрт уже давно выпускает собственную автоматику, я был очень этим обрадован.

Вернемся к монтажу контроллера. Здесь все стандартно: сначала нужно подключить клеммы аккумулятора, потом клеммы солнечных батарей, после чего настраиваются параметры. При подключении внешнего датчика тока можно обнаружить мощность, потребляемую инвертором в режиме реального времени.

На следующем фото можно увидеть, как работает инвертор в гибридном режиме (получая часть энергии – от сети, основную же часть – от солнечных батарей).

Чтобы продемонстрировать работу солнечного контроллера с любым другим инвертором от стороннего производителя, контроллер специально подключается с помощью внешнего датчика тока.

Реальные характеристики контроллера полностью соответствуют заявленным. Он действительно подкачивает энергию, даже при подключении к «чужому» инвертору через датчик тока. Гибридный инвертор, как и планировалось, качает в сеть энергию солнца (на фотографии видно, что100 Вт, а это половина из 200 Вт потребляемых, поступает от солнечных батарей. То есть, минимальные 100 Вт будут забираться контроллером из сети, а недостающие – поступать от солнца. Такова особенность устройства). Таким образом, комплект начал окупать себя уже с момента подключения. А начиная с мая можно рассчитывать и на полное покрытие энергетических нужд солнечными батареями.

Последующая статья станет заключительной, в ней будут сравнены три солнечные контроллера, которые у меня уже имеются.

Источник

Как сделать поворотное устройство для солнечной панели: лучшие идеи

В настоящее время множество людей переходит на солнечные фонарики для сада, к примеру, или на зарядное устройство для телефона. Как всем известно, и понятно, работает такая зарядка от полученной днем солнечной энергии. Однако светило не стоит на месте целый день, а потому, создав поворотное устройство для солнечной батареи своими руками, можно повысить эффективность зарядка примерно в половину, передвигая батарею по направлению к солнцу на протяжении всего дня.

Преимущества

Трекер для солнечных панелей своими руками обладает несколькими очень весомыми преимуществами, которые стоят того, чтобы потратить время на его изготовление и установку.

  1. Первое и наиболее важное преимущество – это то, что поворот солнечного элемента в течение всего дня может повысить КПД батареи примерно в половину. Достигается это за счет того, что максимально эффективная работа солнечных батарей достигается в период, когда лучи от светила падают перпендикулярно на фотоэлемент.
  2. Второе преимущество устройства создается под влиянием первого. Из-за того, что батарея повышает свою эффективность и производит вполовину больше энергии, отпадает необходимость установки дополнительных стационарных батарей. К тому же сама поворотная батарея может обладать меньшим фотоэлементом, чем при стационарном способе. Все это экономит большие материальные средства.

Составные элементы трекера

Создание поворотного устройства для солнечных панелей своими руками включает в себя те же комплектующие, что и заводские товары.

Список обязательных деталей для создания такого устройства:

  1. Основа или каркас – состоит из несущих деталей, которые подразделяются на две категории – это подвижные и неподвижные. В некоторых случаях каркас имеет подвижную часть лишь с одной осью – горизонтальной. Однако есть модели и с двумя осями. В таких случаях нужны актуаторы, которые управляют вертикальной осью.
  2. Описанный ранее актуатор также должен входить в конструкцию и обладать устройствами не только поворота, но и устройствами контроля за этими действиями.
  3. Необходимы детали, которые будут защищать устройство от капризов погоды – гроза, сильный ветер, дождь.
  4. Возможность удаленного управления и доступа к поворотному устройству.
  5. Элемент, преобразующий энергию.

Но стоит отметить, что сбор такого устройства иногда дороже, чем покупка уже готового, а потому в некоторых случаях упрощается до несущих деталей, актуатора, управление актуатором.

Электронные системы поворота

Принцип работы

Принцип работы поворотного устройства очень прост и держится на двух деталях, одна из которых механическая, а другая электронная. Механическая часть поворотного устройства соответственно отвечает за поворот и наклон батареи. А электронная часть регулирует моменты времени и углы наклона, по которым действует механическая часть.

Электрооборудование, используемое вместе с солнечными батареями, заряжается от самих же батарей, что в некотором роде также экономит средства на подпитку электроники.

Положительные стороны

Если говорить о достоинствах электронного оборудования для поворотного устройства, то стоит отметить удобство. Удобство заключается в том, что электронная часть устройства будет в автоматическом режиме управлять процессом поворота батареи.

Данное преимущество не единственное, а является лишь еще одним в списке тех, что были перечислены ранее. То есть помимо экономии средств и повышения КПД, электроника освобождает человека от надобности вручную осуществлять поворот.

Как сделать своими руками

Создать трекер для солнечных батарей своими руками несложно, так как схема его создания проста. Для того чтобы создать работоспособную схему трекера своими руками необходимо иметь в наличии два фоторезистора. Кроме этих составляющих, нужно также приобрести моторное устройство, которое будет поворачивать батареи.

Подключение этого устройства осуществляется при помощи Н – моста. Этот метод подключения позволит преобразовывать ток силой до 500 мА с напряжением от 6 до 15 В. Схема сборки позволить не только понять, как работает трекер для солнечных батарей, но и создать его самому.

Чтобы настроить работу схемы, необходимо провести следующие действия:

  1. Удостовериться в наличия питания на схему.
  2. Провести подключение двигателя с постоянным током.
  3. Установить фотоэлементы нужно рядом, чтобы добиться одинакового количества солнечных лучей на них.
  4. Необходимо выкрутить два подстроечных резистора. Сделать это нужно против часовой стрелки.
  5. Запускается подача тока на схему. Должен включиться двигатель.
  6. Вкручиваем один из подстроечников до тех пор, пока он не упрется. Помечаем это положение.
  7. Продолжить вкручивание элемента до тех пор, пока двигатель не начнет крутиться в противоположную сторону. Помечаем и это положение.
  8. Делим полученное пространство на равные отделы и посередине устанавливаем подстроечник.
  9. Вкручиваем другой подстроечник до тех пор, пока двигатель не начнет немного дергаться.
  10. Возвращаем подстроечник немного назад и оставляем в таком положении.
  11. Для проверки правильности работы можно закрывать участки солнечной батареи и смотреть за реакцией схемы.

Часовой механизм поворота

Устройство часового механизма поворота в основе своей довольное простое. Для того чтобы создать такой принцип работы, нужно взять любые механические часы и соединить их с двигателем солнечной батареи.

Для того чтобы заставить работать двигатель, необходимо установить один подвижный контакт на длинную стрелку механических часов. Второй неподвижный закрепляется на двенадцати часах. Таким образом, каждый час, когда длинная стрелка будет проходить через двенадцать часов, контакты будут замыкаться, и двигатель будет поворачивать панель.

Временной промежуток в один час, выбран исходя из того, что за это время солнечное светило проходит по небу около 15 градусов. Установить еще один неподвижный контакт можно на шесть часов. Таким образом, поворот будет проходить каждые полчаса.

Водяные часы

Данный способ управления поворотным устройством был изобретен одной предприимчивой канадской студенткой лет и отвечает за поворот лишь одной оси, горизонтальной.

Принцип работы также прост и заключается в следующем:

  1. Солнечная батарея устанавливается в изначальное положение, когда солнечные лучи попадают на фотоэлемент перпендикулярно.
  2. После этого к одной из сторон цепляют емкость с водой, а к другой стороне цепляют какой-нибудь предмет такого же веса, что и емкость с водой. Дно емкости должно обладать небольшим отверстием.
  3. Через него вода будет понемногу вытекать из емкости, из-за чего будет уменьшаться вес, а панель будет потихоньку наклоняться в сторону противовеса. Определить размеры отверстия для емкости придется экспериментально.

Данный способ является наиболее простым. К тому же он экономит материальные средства, которые ушли бы на покупку двигателя, как в случае с часовым механизмом. К тому же, провести монтаж поворотного механизма в виде водяных часов можно самостоятельно, даже не обладая какими-либо специальными знаниями.

Видео

Как сделать трекер для солнечной батареи своими руками, вы узнаете из нашего видео.

Источник

Читайте также:  Микрокалькулятор с солнечной батареей
Оцените статью