- Вертикальные ветрогенераторы с ротором Дарье
- Вертикальный ветрогенератор своими руками
- С чего все начиналось
- Ниже наглядные картинки для понимания принципа роботы данного ротора
- Схема разметки координат лопастей
- Изготовление лопастей.
- Изготовление генератора.
- Электроника
- Установка ветрогенератора.
- Создаем ветрогенератор Савониуса своими руками
- Что представляет собой ротор Савониуса
- Особенности вертикально-осевых роторов
- Использование автомобильного генератора
- Изготовление ротора Савониуса
Вертикальные ветрогенераторы с ротором Дарье
Ветрогенераторы на базе горизонтально-осевых турбин — не единственное возможное решение для качественного преобразования энергии ветра в электричество. Есть и другие конструкции, иногда показывающие большую эффективность чем осевые турбины. Пример такой альтернативной конструкции — ветрогенератор с вертикальным ротором Дарье.
Это необычное решение было предложено еще в 1931 году французским авиаконструктором Жоржем Дарье, который поставил перед собой задачу создать такой ветрогенератор, который бы работал при любом направлении ветра, при том не требуя строгой ориентации.
Ротор генератора вместе с узкими лопастями было предложено расположить вертикально, чтобы как при слабом, так и при сильном ветре — значительная часть воздушного потока не встречала существенного аэродинамического сопротивления, а непосредственно давила бы на рабочие поверхности лопастей, приводя к их вращению.
С этой точки зрения даже ротор Савониуса, предложенный в 1922 году финским инженером Сигурдом Савониусом, уступает, так как имеет ограничение эффективности при большой скорости ветра. Ротор Дарье, в свою очередь, лишен этих недостатков, хотя и не имеет столь детального математического описания своей работы как его предшественник.
Примечательно, что ротор Дарье в лучшем его исполнении имеет три аэродинамических крыла, которые закреплены на радиально расположенных горизонтальных балках на некотором расстоянии от центральной оси ротора.
По этой причине характер обтекания крыльев ротора Дарье воздухом сложен, но быстроходность генератора полностью нивелирует этот кажущийся недостаток. Тогда как, например, горизонтально-осевые турбины, да и тот же ротор Савониуса, теряют эффективность при сильном ветре, ротор Дарье в аналогичных условиях вращается примерно в 3,5 раза быстрее и не вызывает проблем балансировки.
Вертикально расположенный вращающийся вал практически не влияет отрицательно на работу ветрогенератора с ротором Дарье, а наоборот способствует эффективности, поскольку является довольно тонким. В таких условиях производимый устройством шум гораздо ниже чем у горизонтально-осевых ветрогенераторов, больше напоминающих большие вентиляторы с пропеллерами.
Здесь же поток воздуха обтекает лопасти и весь генератор в любом направлении равномерно, что, кстати, и обеспечивает колоссальную быстроходность столь уникального ротора. При этом ветрогенераторы с ротором Дарье просты в изготовлении, здесь даже нет необходимости в пропеллерном профиле.
Однако, справедливости ради стоит отметить и некоторые недостатки таких конструкций. Из-за эффекта Магнуса мачта генератора с ротором Дарье испытывает значительные нагрузки, поэтому конструирование необходимо проводить очень точно, а адекватной математической модели по сей день не существует. Да и окупаемость любых ветрогенераторов по времени продолжительна. По этой причине производители горизонтально-осевых ветрогенераторов не спешат отбрасывать работающую годами технологию.
Источник
Вертикальный ветрогенератор своими руками
С чего все начиналось
Поэтому было решено построить ветрогенератор чтобы использовать еще и энергию ветра. Сначала было желание построить парусный ветрогенератор. Такой тип ветрогенераторов очень понравился, и после некоторого времени проведенного в интернете в голове и на компьютере накопилось много материалов по этим ветрогенераторам.Но строить парусный ветрогенератор довольно затратное дело, так-как такие ветрогенераторы маленькие не строят и диаметр винта для ветрогенератора такого типа должен быть как минимум метров пять.
Большой ветрогенератор не было возможности потянуть, но все-таки очень хотелось попробовать сделать ветрогенератор, хотя бы небольшой мощности, для зарядки аккумулятора. Горизонтальный пропеллерный ветрогенератор сразу отпал так-как они шумные, есть сложности с изготовлением токосьемных колец и защитой ветрогенератора от сильного ветра, а так-же трудно изготовить правильные лопасти.
Хотелось чего-то простого и тихоходного, посмотрев некоторые видеоролики в интернете очень понравились вертикальные ветрогенераторы типа Савониус. По сути это аналоги разрезанной бочки, половинки которой раздвинуты в противоположные стороны. В поисках информации нашел более продвинутый вид этих ветрогенераторов — ротор Угринского. Обычные Савониусы имеют очень маленький КИЭВ ( коэффициент использования энергии ветра), он обычно всего 10-20%, а ротор Угринского имеет более высокий КИЭВ за счет использования отражённой от лопастей энергии ветра.
Ниже наглядные картинки для понимания принципа роботы данного ротора
Схема разметки координат лопастей
КИЭВ ротора Угринского заявлен аш до 46% , а значит он не уступает горизонтальным ветрогенераторам. Ну а практика покажет что и как.
Изготовление лопастей.
Материалы для ротора выбраны самые простые и дешовые. Лопасти сделаны из алюминиевого листа толщиной 0,5мм. Из фанеры толщиной 10мм вырезаны три круга. Круги были расчерчены по рисунку выше и были сделаны бороздки глубиной 3 мм для вставки лопастей. Крепление лопастей сделано на маленьких уголочках и стянуто на болтики. Дополнительно для прочности всей сборки фанерные диски стянуты шпильками по краям и в центре, получилось очень жёстко и прочно.
Размер получившегося ротора 75*160см, на материалы ротора потрачено примерно 3600 рублей.
Изготовление генератора.
В поисках информации на форумах оказалось многие люди делают генераторы сами и в этом нет ничего сложного. Решение было принято в пользу самодельного генератора на постоянных магнитах. За основу была взята классическая конструкция аксиального генератора на постоянных магнитах, сделанная на автомобильной ступице.
Первым делом были заказаны неодимовые магниты шайбы для этого генератора в количестве 32 шт размером 10*30мм. Пока шли магниты изготавливались другие детали генератора. Вычислив все размеры статора под ротор, который собран из двух тормозных дисков от автомобиля ВАЗ на ступице заднего колеса, были намотаны катушки.
Для намотки катушек сделан простенький ручной станочек. Количество катушек 12 по три на фазу, так-как генератор трехфазный. На дисках ротора будет по 16 магнитов, это соотношение 4/3 вместо 2/3, так генератор получится тихоходнее и мощнее.
Для намотки катушек сделан простой станочек.
На бумаге размечены места расположения катушек статора.
Для заливки статора смолой изготовлена форма из фанеры. Перед заливкой все катушки были спаяны в звезду, а провода выведены наружу по прорезанным канальцам.
Катушки статора перед заливкой.
Свеже залитый статор, перед заливкой на дно был постелен кружок из стеклосетки, и после укладки катушек и заливкой эпоксидной смолой поверх них был уложен второй кружок, это для дополнительной прочности. В смолу добавлен тальк для крепкости, от этого она белая.
Так-же смолой залиты и магниты на дисках.
А вот уже собранный генератор, основа тоже из фанеры.
После изготовления генератор сразу был покручен руками на предмет вольт-амперной характеристики. К нему был подключен мотоциклетный аккумулятор 12 вольт. К генератору была приделана ручка и смотря на секундную стрелку и вращая генератор были получены некоторые данные. На аккумулятор при 120 об/м получилось 15 вольт 3,5А, быстрее раскрутить рукой не позволяет сильное сопротивление генератора. Максимум в холостую на 240 об/м 43 вольта.
Электроника
Для генератора был собран диодный мост, который был упакован в корпус, а на корпусе были смонтированы два прибора это вольтметр и амперметр. Так-же знакомый электронщик спаял простенький контроллер для него. Принцип контроллера прост, при полном заряде аккумуляторов контроллер подключает дополнительную нагрузку, которая съедает все излишки энергии чтобы аккумуляторы не перезарядились.
Первый контроллер спаянный знакомым не совсем устраивал, по этому был спаян более надежный программный контроллер.
Установка ветрогенератора.
Для ветрогенератора был сделан мощный каркас из деревянных брусков 10*5 см. Для надежности опорные бруски были вкопаны в землю на 50 см, а так-же вся конструкция была дополнительно усилена растяжками, которые привязывались к уголкам вбитым в землю. Такая конструкция очень практична и быстро устанавливается, а так-же в изготовлении проще чем сварная. Поэтому было принято решение строить из дерева, а металл дорого и сварку некуда включать пока.
Вот уже готовый ветрогенератор.На этом фото привод генератора прямой, но в последствии был сделан мультипликатор для поднятия оборотов генератора.
Привод генератора ременной, передаточное соотношение можно менять заменой шкивов.
В последствии генератор был соединен с ротором через мультипликатор. В общем итоге ветрогенератор выдает 50 ватт на ветру 7-8 м/с, зарядка начинается на ветру 5 м/с, хотя начинает вращаться на ветре 2-3 м/с, но обороты слишком маленькие для зарядки аккумулятора.
В будущем планируется поднять ветрогенератор по выше и переработать некоторые узлы установки, а тск-же возможно изготовление нового более большого ротора.
Источник
Создаем ветрогенератор Савониуса своими руками
Обновлено: 5 января 2021
Применение ветрогенераторов становится все более распространенным способом производства электроэнергии. Они довольно просты, не требуют слишком значительного ухода и частых ремонтов, позволяют обеспечить электроэнергией частный дом или служат источником дополнительного питания для освещения и т.д. Стоимость готового комплекта слишком высока, что служит поводом проявить свои конструкторские способности и заняться изготовлением ветряка своими руками. Рассмотрим одну из наиболее известных и распространенных конструкций ветрогенераторов.
Что представляет собой ротор Савониуса
Ветрогенератор или, точнее, ротор Савониуса — это конструкция с вертикальной осью вращения. Лопасти такого ротора представляют собой изогнутые плоскости, объединенные обычно по 2 шт. Это вызвано тем, что большая площадь лопастей вызывает сильные противодействующие нагрузки, когда потоком ветра создается давление на тыльные стороны. Создается компенсирующее давление, уравновешивающее воздействие на обе стороны лопаток, что создает трудности при запуске.
Существуют и конструкции с большим количеством лопастей, но они немного изменены — разнесены в стороны и имеют относительно небольшую площадь. Такой вариант применяется при использовании тяжелых роторов, нуждающихся в сильном крутящем моменте для работы, и разнос лопастей относительно оси создает рычаг, увеличивающий усилие вращения.
На первый взгляд, ротор Савониуса неработоспособен, поскольку задняя сторона лопастей создает сильное сопротивление вращению оси. Но это не так. Потоки ветра, попадающие на заднюю часть лопатки, благодаря ее закругленной форме мягко омывают ее и делятся на две части. Одна уходит в сторону, а другая соскальзывает на рабочую сторону второй лопасти и способствует усилению ее вращения.
Этот эффект хорошо проявляется только при 2 лопастях, расположенных диаметрально, поэтому для увеличения крутящего момента используют пары лопастей, установленных друг под другом с поворотом относительно вертикальной оси на 90°.
Особенности вертикально-осевых роторов
Вертикальные конструкции имеют меньшую эффективность по сравнению с горизонтальными. Это их основной и общепризнанный недостаток. При этом, вертикальные конструкции намного удобнее в самостоятельном изготовлении. Они не нуждаются в системе наведения на ветер, что является обязательным для горизонтальных роторов. Кроме того, независимость от угла атаки ветра позволяет существенно снизить вес вращающейся части, что облегчает запуск при относительно слабых ветрах.
Помимо уже известного нам ротора Савониуса распространены другие типы вертикально-осевых конструкций:
- ротор Дарье
- ротор Ленца ортогональный
- геликоидный
Обилие конструкций позволяет выбрать наиболее доступную для самостоятельного изготовления. Основная задача мастера — понять специфику избранной для повторения системы, усвоить принцип ее действия. Все допущенные ошибки обычно выражаются трудностями при запуске вращения и большим весом ротора, который создает чрезмерную нагрузку на опорные конструкции и обладает большой инерцией покоя. В сети имеется множество роликов с описаниями самодельных ветрогенераторов. Вот, например, репортаж о создании ротора Ленца:
Особенностью конструкции является сочетание подъемной силы лопастей, имеющих в сечении форму крыла самолета, с дополнительными уступами на внешней части лопастей, увеличивающими ветровое давление на них и усиливающими крутящий момент.
Подобных конструкций имеется немало, что подтверждает возможность создания своими руками ветрогенератора без крупных денежных вложений.
Использование автомобильного генератора
Одним из необходимых элементов ветрогенератора является собственно генератор, устройство, преобразующее энергию вращения в электрический ток.
Существуют разные пути решения вопроса, от самодельных конструкций, до использования мотор-колеса или иных готовых устройств. Одним из эффективных вариантов является автомобильный генератор. Это готовая конструкция, не нуждающаяся в каких-либо существенных изменениях или переделках.
Применение автомобильных генераторов сокращает время изготовления ветрогенератора, снимает заботу о создании генератора своими руками (часто с неясным результатом).
Приведенный видеоролик достаточно подробно и наглядно демонстрирует процесс доработки, установки и прочих действий с автомобильным генератором при создании ветряка.
Изготовление ротора Савониуса
Конструкция Савониуса, при всех своих недостатках, наиболее удобна для создания своими руками. Она не требует создания лопастей со сложными криволинейными поверхностями или сечением, способствующим созданию подъемной силы. Для изготовления лопастей Савониуса подойдут любые криволинейные элементы из продольно разрезанных пластиковых труб, металлических бочек, загнутых самостоятельно металлических листов.
Для изготовления ротора достаточной величины прежде всего потребуется ось вращения, установленная на подшипники. Наиболее распространена конструкция, когда часть вала, на которой будут закреплены лопасти, выходит из проходной ступицы с подшипником и остается свободной, чтобы не создавать препятствий для движения лопаток. Нижняя часть вала проходит через второй подшипник и оснащается шкивом для передачи вращения на мультипликатор (устройство, увеличивающее скорость вращения) или непосредственно на генератор.
Изготовление лопаток требует наличия материала. Как уже говорилось, используются изначально загнутые элементы, или применяются стальные листы (например, из оцинкованной стали), профиль которым придается самостоятельно. Выбор того или иного варианта — вопрос доступности или возможностей мастера, но если лопатки делаются полностью самостоятельно, то не возникает зависимости от размеров труб, бочек или иных цилиндров.
Установка лопаток производится на прямой линии, проходящей через ось вращения. При монтаже большого количества лопаток может получиться ситуация, когда ротор находит устойчивое положение и не запускается даже при относительно большой скорости ветра, что требует приложения к нему стартового импульса. Необходимо также следить за весом конструкции и стремиться всячески снизить его, но не в ущерб прочности. Легкая вращающаяся часть начинает движение при меньших скоростях ветра, поэтому чрезмерно увеличивать массу ротора нецелесообразно.
Источник