- Самые значимые достижения 2020 года в разработке аккумуляторов
- Россияне научили аккумуляторы заряжаться за секунды
- Аккумуляторы станут лучше
- Два полимера и новый тип аккумулятора
- Конкурирующие разработки
- 880 км на одной зарядке и ресурс 1,2 млн километров. Китайцы представили супербатарею для электромобилей
- Китайские компании готовы навязать серьезную конкуренцию японским производителям аккумуляторов для электромобилей
- Представлены аккумуляторы для электромобилей будущего: быстрая зарядка, минимальная деградация и высокая ёмкость
Самые значимые достижения 2020 года в разработке аккумуляторов
Уже через несколько лет традиционные литий-ионные батареи будут не актуальны с их нынешними характеристиками. В прошедшем году ученые предлагали самые разные способы улучшить аккумуляторы, сделав их мощнее, экономичнее и эффективнее.
Безопасный металлический литий
Один из самых перспективных новых материалов — металлический литий. Его использование в качестве анода может серьезно повысить плотность аккумулятора и продлить срок его службы. Но металлический литий небезопасен: при зарядке на аноде формируются наросты (дендриты), что ведет к коротким замыканиям и возгоранию — не очень привлекательная перспектива.
Ученые из Вашингтонского государственного университета предложили добавить несколько химикатов в раствор катода и электролита. Благодаря этому на поверхности анода образовался защитный слой и анод смог оставаться стабильным при зарядке в течение 500 циклов. Плюс технологии — возможность ее интеграции в существующие производственные процессы.
Аккумулятор с ультразвуком
Весьма творчески подошли к решению проблемы с металлическим литием ученые Калифорнийского университета в Сан-Диего. Они разработали миниатюрное ультразвуковое устройство и включили его в литий-металлическую батарею. Устройство посылает высокочастотные звуковые волны через жидкий электролит, заставляя его плавно течь, а не оставаться в статике.
Это, в свою очередь, приводит к равномерному распределению лития на аноде и дендриты не нарастают. При тестировании аккумулятор с новым оборудованием заряжался с 0 до 100% всего за 10 минут и продержался 250 циклов зарядки.
Самые быстрые электроды в мире
Специалисты французского стартапа Nawa Technologies решили изменить структуру электродов в обычных литий-ионных батареях — их мощность значительно увеличилась. Вместо беспорядочной структуры, требующей, чтобы заряженные ионы перемещались по лабиринту, разработчики предложили электрод, который состоит из вертикально выровненной структуры, напоминающей щетку для волос, с высокопроводящими углеродными нанотрубками.
По сути, это создает скоростную трассу для перемещающихся ионов и позволяет увеличить скорость заряда батареи в 10 раз — пополнение аккумулятора от 0 до 80% происходит всего за 5 минут. Срок службы вырастает в 5 раз, а плотность энергии увеличивается трехкратно.
Нанонити для увеличения емкости
Российские учёные из МИЭТ разработали нанонити, которые способны увеличить емкость батарей в 3 раза, а тепловые потери в процессе работы благодаря им можно обратить в электричество.
По замыслу ученых, нанонити из германия могут заменить графитовые электроды в современных батареях. Емкость их при этом повысится, а размеры не изменятся.
Кремний может хранить в четыре раза больше ионов лития, чем современные графит и медь, но емкость батарей быстро уменьшается. Ученые из Кореи нашли метод этого избежать. Кремниевый анод поместили в специальный раствор, который заставляет электроны и ионы лития просачиваться в электрод — так компенсируются потери.
Обычно аноды на основе кремния теряют более 20% ионов лития во время зарядки, а новый анод потерял менее 1%. Также его плотность энергии на 25% выше, чем коммерчески доступные аналоги.
Натрий-ионные аккумуляторы из пластиковых бутылок
Еще один вид аккумуляторов с большим потенциалом — это натрий-ионные. Ученые из Университета Пердью использовали обычные пластиковые отходы для создания ключевого компонента такой батареи.
Для превращения пластика в хлопья они применили стандартную микроволновую технологию, обработав его сверхбыстрым микроволновым излучением. В результате ученые получили терефталат натрия, известный своими хорошими электрохимическими характеристиками и пригодный для производства натрий-ионной батареи.
Электроды из панцирей креветок
Хитин, содержащийся в панцирях креветок, в Массачусетском технологического институте использовали для производства экологически безопасного электрода для проточной батареи. Вместо того, чтобы хранить энергию внутри самого аккумулятора, такие батареи хранят энергию в жидких электролитах в огромных внешних резервуарах, которые при необходимости можно просто увеличить.
Ученые решили сделать ключевой строительный блок этих батарей из экологически чистых материалов. Для производства электродов для проточной батареи они взяли хитин из панцирей креветок в сочетании с войлоком. Кроме высоких показателей удельной мощности такой батареи, у нее есть еще преимущество — низкая стоимость исходного материала.
Самый прочный электролит в мире
Еще один пример твердотельной батареи с впечатляющей долговечностью — изобретение исследователей из Университета Брауна. Они утверждают, что, добавив графен в керамический материал, сделали самый прочный твердый электролит на свете.
Что любопытно, графен обладает высокой проводимостью, а это как раз нежелательно для электролита батареи. Но, поддерживая концентрацию графена на достаточно низком уровне, ученые смогли найти золотую середину, которая не позволяла графену проводить электричество, но при этом обладала высочайшей прочностью.
Жидкометаллическая батарея, работающая при комнатной температуре
Обычно в жидкометаллических аккумуляторах металлы нужно нагревать до температуры не менее 240 °C. Но экспериментальная полностью жидкометаллическая батарея способна работать при комнатной температуре и по характеристикам гораздо лучше литий-ионных аккумуляторов.
В ней ученые из Техасского университета в Остине использовали сплавы, способные оставаться жидкими при комнатной температуре. Такая батарея имеет более высокую мощность, чем литий-ионная, и гораздо быстрее заряжается.
Новое покрытие для старой батареи
В Аргоннской Национальной Лаборатории нашли способ продлить срок службы привычных литий-ионных аккумуляторов — для этого использовали инновационное катодное покрытие из полимера PEDOT.
Благодаря такому покрытию традиционные аккумуляторы становятся безопаснее, так как не образуется нежелательная пленка на катоде. При этом , срок их службы продлевается, так как повышается рабочее напряжение.
Источник
Россияне научили аккумуляторы заряжаться за секунды
Российские ученые создали особый полимерный материал для катодов аккумуляторов, позволяющий сократить время их зарядки до нескольких секунд и одновременно повысить их плотность вместе с временем службы. АКБ с новыми катодами смогут проработать до 70 лет и при этом сохранить около трети своей емкости.
Аккумуляторы станут лучше
Российские специалисты из «Сколтеха», Российского химико-технологического университета им. Д. И. Менделеева (РХТУ) и Института проблем химической физики (ИПХФ) разработали новые материалы на основе полимеров для использования их в качестве катода в современных аккумуляторах. Как сообщили CNews представители РХТУ, исследователи протестировали их в составе особых литиевых двухионных батарей и на выходе получили сверхбыстрые АКБ, заряжающиеся за несколько секунд.
Использование новых катодных материалов не только привело к сокращению времени, уходящего на подзарядку аккумулятора, но и позволило значительно продлить срок его службы. Такие АКБ способны выдерживать до 25 тыс. циклов перезарядки.
По заявлениям авторов новой технологии, с использованием катодов на ее основе могут быть созданы еще и калиевые двухионные аккумуляторы, в которых дорогостоящий и очень неэкологичный (даже на этапе производства) литий заменен на более доступный и менее редкоземельный и токсичный калий.
Два полимера и новый тип аккумулятора
Специалисты РХТУ, ИПХФ и «Сколтеха» синтезировали сразу два новых разветвленных полимера – сополимер дигидрофеназина и дифениламина и сополимер дигидрофеназина и фенотиазина. Тесты показали, что первый полимер намного лучше справляется с поставленной задачей – именно он позволил добиться полной зарядки АКБ за несколько секунд. Кроме того, при его использовании батарея способна пережить до 25 тыс. циклов перезарядки и сохранить при этом до трети своей емкости. Специалисты подсчитали, что при обычных условиях эксплуатации такой аккумулятор мог бы служить до 70 лет.
В качестве анода ученые использовали металлический литий, но они также провели эксперимент и с калием. Батареи с анодом из этого материала и сополимером дигидрофеназина и фенотиазина в виде катода продемонстрировали повышенную плотность энергии – вплоть до 398 Втч/кг. Литиевые аккумуляторы с таким же катодом демонстрировали в 1,5-2 раза меньшую плотность – от 200 до 250 Втч/кг.
Материалы катодов, которые разработали исследователи, созданы на основе полимерных ароматических аминов. К их особенностям относится, помимо прочего, еще и возможность синтезировать их из различных органических соединений. Что касается двухионных АКБ, то в электрохимических процессах внутри них, в отличие от обычных литий-ионных батарей, задействованы как анионы, так и катионы электролита. Это напрямую влияет на многократный прирост скорости подзарядки.
«У нашей группы уже были работы по полимерным катодам для сверхбыстрых аккумуляторов с хорошей емкостью, которые можно заряжать и разряжать за несколько секунд. Среди прочих, раньше мы использовали линейные полимеры, у которых каждое мономерное звено образует связи только с двумя соседями, а в этой работе мы продолжили изучение новых разветвленных полимеров, у которых каждое звено может образовывать связи как минимум с тремя другими звеньями. Они формируют объемные сетчатые структуры, которые обеспечивают более быструю кинетику электродных процессов», – отметил первый автор работы, аспирант «Сколтеха», Филипп Обрезков. «С электродами из таких материалов аккумуляторы могут еще быстрее заряжаться и разряжаться», – добавил он.
Конкурирующие разработки
Авторы изобретения не уточнили, когда, по их прогнозам, может начаться массовое производство аккумуляторов, в которых используются созданные ими полимерные катоды. Между тем, в России существует целый ряд перспективных технологий, позволяющих улучшить современные элементы питания и способных составить конкуренцию детищу сотрудников РХТУ, ИПХФ и «Сколтеха».
Например, если эти ученые предлагают заменить литий на калий, то группа специалистов из Национального исследовательского технологического университета «МИСиС», Института биохимической физики им. Н.М. Эмануэля РАН и немецкого Центра им. Гельмгольца в Дрезден-Россендорфе считают, вместо лития следует использовать другой щелочной металл – натрий. CNews писал, что натрий в данном случае позволит снизить нагрузку на окружающую среду, поскольку добывать его проще, чем литий – он есть даже в обычной поваренной соли. Отсюда вытекает и снижение затрат на его добычу, а его применение в АКБ позволит сделать элементы питания более стабильными – литиевые аккумуляторы известны своей взрывоопасностью.
У специалистов «МИСиС» есть и еще одна альтернатива литиевым батареям, в которой нет ни натрия, ни калия – только сорняковое растение, в изобилии растущее во многих регионах России. Они предлагают делать не аккумуляторы, а суперконденсаторы с электродом из стеблей борщевика – для их превращения в углеродный материал, а затем и в электроды ученые разработали особую технологию их обработки, включающую воздействие на них соляной кислоты и насыщение углекислым газом.
Созданная технология преобразования борщевика в электроды суперконденсаторов была протестирована в лабораторных условиях, и эксперимент завершился успехом. Но, как и в случае с полимерными катодами и калиевыми АКБ за авторством ученых из РХТУ, ИПХФ и «Сколтеха», сроки коммерциализации этой идеи авторы не уточняют.
Источник
880 км на одной зарядке и ресурс 1,2 млн километров. Китайцы представили супербатарею для электромобилей
Китайские компании готовы навязать серьезную конкуренцию японским производителям аккумуляторов для электромобилей
Китайская компания Honeycomb Energy сегодня официально представила свои аккумуляторные батареи нового поколения для электромобилей. Новинок две, их массовое производство начнется в 2021 году.
Нужно отметить, что Honeycomb Energy – отнюдь не новичок на рынке: фирма ведет исследования в этой области с 2012 года, а в 2018 году она стала независимым поставщиком аккумуляторных батарей. Сегодня компания представила два модуля: один характеризуется емкостью 115 А·ч и плотностью энергии 245 Вт·ч/кг, второй – емкостью 226 А·ч и плотностью энергии 240 Вт·ч/кг. Применение второго позволяет достигнуть запаса хода в 880 км на одной зарядке. Но ресурс одинаков в обоих случаях: 15 лет службы и 1,2 млн километров. Примерно к таким же показателям стремится Tesla: ее новая аккумуляторная батарея, разрабатываемая совместно с китайским партнером, должна обеспечивать ресурс в 1,6 млн километров.
Из других особенностей новинок Honeycomb Energy – исключение из химического состава кобальта, большая выносливость (2500 циклов разряда/заряда), безопасность и стойкость ко внешним воздействиям – в частности, обе аккумуляторные батареи неоднократно протестировали на устойчивость к высокой температуре в 150°C.
Источник
Представлены аккумуляторы для электромобилей будущего: быстрая зарядка, минимальная деградация и высокая ёмкость
В конце ноября американская компания QuantumScape, которую до этого десять лет деньгами поддерживали только фонд Билла Гейтса и Volkswagen, стала публичной и вышла из тени. Сразу было заявлено, что разрабатываемые компанией твердотельные литийметаллические аккумуляторы станут батареями для электромобилей второго поколения, которые по дальности хода сравнятся с автомобилями на ДВС. Сегодня она с цифрами в руках доказывает свою правоту.
Аккумуляторная ячейка QuantumScape. Источник изображения: QuantumScape
До разработки QuantumScape, которая десять лет назад вышла из стен Стэндфордского университета, твердотельные литийметаллические аккумуляторы считались перспективными, но страдающими массой отрицательных побочных явлений. В частности, они были безопаснее и более ёмкими, чем литийионные, но обладали узким рабочим температурным диапазоном. Аккумуляторы QuantumScape, как утверждают разработчики, свободны от детских болезней твердотельных литийметаллических аккумуляторов и могут стать коммерчески осуществимыми уже через четыре года.
Главной особенностью твердотельных литийметаллических аккумуляторов QuantumScape можно считать то, что аккумуляторы не имеют анода. Точнее, при производстве аккумуляторов QuantumScape анод не изготавливается. Этот электрод формируется в уже собранной аккумуляторной ячейке путём осаждения металлического лития в процессе заряда ячейки. Заявленная скорость осаждения лития в процессе формирования анода превосходит все предыдущие показатели и достигает одного микрона в минуту, что обещает высокую плотность зарядного тока и быструю зарядку: до 80 % ёмкости за 15 минут.
В компании гордятся, что анод аккумулятора спроектирован с «нулевым превышением лития». Иначе говоря, в процессе производства ячейки нет необходимости даже в минимальном количестве лития в виде фольги или осаждения в месте формирования анода. Это заметно удешевляет и упрощает производство ячеек.
Ещё одним важным изобретением QuantumScape стало создание керамического сепаратора, который разделяет электроды. Сепаратор QuantumScape тоньше человеческого волоса и невоспламеняемый. В обычной литийионной ячейке сепаратор изготавливается из органических материалов и служит одной из причин пожароопасности элементов. Следует отметить, что аккумуляторные ячейки QuantumScape будут изготавливаться в виде «мешочков», а не в цилиндрическом формфакторе. Возможно это одна из особенностей использования керамических сепараторов.
Источник изображения: QuantumScape
Аккумуляторы QuantumScape также могут похвастаться толстыми катодами с возможностью пропускать токи высокой плотности свыше 3 мА·ч/см 2 в течение часа заряда и разряда с токами 1C. После прохождения 800 циклов заряда и разряда ячейки QuantumScape сохранили свыше 80 % ёмкости, что потенциально обещает возможность проехать на одном аккумуляторе сотни тысяч км. Что также важно, аккумуляторы сохраняют рабочие характеристики до температур -30 °C, чего невозможно было добиться с помощью альтернативных разработок. Также, за счёт того, что из анода убран графит или графит-кремний, вещество электролита не деградирует в ходе побочных реакций в процессах зарядки и разрядки ячейки. Как нетрудно понять, это сохраняет рабочие параметры ячейки максимально долго.
Наконец, QuantumScape обещает довести ёмкость коммерческих твердотельных литийметаллических аккумуляторов до проверенного в лабораториях максимума: 1000 Вт·ч/л. Тем самым ёмкость аккумуляторов может вырасти на 80 % по сравнению с лучшими современными литийионными ячейками и довести запас хода электромобилей до величин, сопоставимых с возможностями автомобилей на двигателях внутреннего сгорания.
Источник