Каталог стандартных солнечных батарей и модулей
Сертификат соответствия РОСС RU.МЛ07.Н00316
ДОСТАВКА ПРОДУКЦИИ ТРАНСПОРТНЫМИ КОМПАНИЯМИ, КУРЬЕРСКИМИ СЛУЖБАМИ И ПОЧТОЙ РФ ВО ВСЕ РЕГИОНЫ РОССИИ
СНИЖЕНЫ ЦЕНЫ НА БОЛЬШИНСТВО МОДЕЛЕЙ СОЛНЕЧНЫХ МОДУЛЕЙ
Каждая строчка каталога солнечных модулей активна-жмите название модели для просмотра
КАРКАСНЫЕ СОЛНЕЧНЫЕ МОДУЛИ серии МСК:
Модель | Размер, мм | Uн, В | Uxx, В | Iкз, А | Up, В | Ip, А | Wp, Вт | Вес, кг | Фотоэлементы | Цена, (руб)* |
---|---|---|---|---|---|---|---|---|---|---|
МСК-15 | 285*425*28 | 12 | 22,1 | 0,92 | 18 | 0,83 | 15 | 1,9 | монокристалл | 2200 |
МСК-20 | 425*425*28 | 12 | 22,1 | 1,30 | 18 | 1,22 | 20 | 2,7 | монокристалл | 2400 |
МСК-30 | 425*555*28 | 12 | 22,1 | 1,80 | 18 | 1,67 | 30 | 3,4 | поликристалл | 2500 |
МСК-50 | 545*668*28 | 12 | 22,1 | 2,75 | 18 | 2,50 | 45 | 4.0 | поликристалл | 3500 |
МСК-60 | 550*810*28 | 12 | 22,1 | 3,55 | 18 | 3,33 | 60 | 5,5 | монокристалл | 4000 |
МСК-100 | 540*1200*35 | 12 | 22,1 | 5,58 | 18 | 5,27 | 95 | 8,0 | монокристалл | 5300 |
ФСМ-150 | 667*1467*35 | 12 | 22,1 | 8,58 | 18 | 8,33 | 150 | 12 | поликристалл | 7000 |
МСК-150 | 674*1482*35 | 12 | 22,1 | 8,58 | 18 | 8,33 | 150 | 12 | монокристалл | 7500 |
МСК-200 | 805*1575*40 | 24 | 44,2 | 5,98 | 36 | 5,56 | 200 | 17 | монокристалл | 10000 |
МСК-250 | 991*1650*40 | 20 | 37,2 | 9,22 | 30 | 8,33 | 250 | 19.5 | монокристалл | 12000 |
*Возможно отклонение мощности, в этос случае стоимость рассчитывается пропорционально мощности;
*Оптовые цены согласовываются по запросу в результате переговоров;
*Возможно изготовление солнечных модулей по размерам заказчика;
*НДС отсутствует — цена окончательная.
БЕСКАРКАСНЫЕ СОЛНЕЧНЫЕ МОДУЛИ серии МСБ:
Модель | Размер, мм | Uн, В | Uxx, В | Iкз, А | Up, В | Ip, А | Wp, Вт | Вес, кг | Подложка | Цена, (руб)* |
---|---|---|---|---|---|---|---|---|---|---|
МСБ-7(6) | 220*300*3.5 | 6 | 10,9 | 0,92 | 8,5 | 0,86-0,88 | 7 | 0,3 | стеклотекстолит | 1200 |
МСБ-15(12) | 280*425*3.5 | 12 | 21,8 | 0,92 | 17 | 0,86-0,88 | 15 | 0,6 | стеклотекстолит | 2500 |
МСБ-20(12) | 280*630*3.5 | 12 | 21,8 | 1,30 | 17 | 1,05-1,17 | 20 | 0,9 | стеклотекстолит | 2800 |
— освещенность поверхности 1000Вт/м 2 |
— рабочая температура 25ºС |
— спектр излучения АМ1.5 |
— Uн — номинальное напряжение, В; |
— Uхх — напряжение холостого хода, В; |
— Iкз — ток короткого замыкания, А; |
— Uр — напряжение максимальной мощности, В; |
— Wp — максимальная мощность, Вт; |
— Iр — рабочий ток, А; |
ФОТОЭЛЕМЕНТЫ:
— Материал монокристаллический кремний солнечного качества. Элементы односторонние.Толщина элементов 180-200мкм. Форма псевдоквадрат или «чистый» квадрат. Тип проводимости «р», лицевая поверхность «-«, тыльная сторона «+». На заказ возможна лазерная резка из стандартных ФЭП.
СОЛНЕЧНЫЕ МОДУЛИ:
— Каркасный солнечный модуль(серия МСК) конструктивно это лист закаленного стекла, на котором заламинированы фотоэлементы. Этот ламинат окантован каркасом из аллюминиевого профиля. Профиль может быть анодирован либо покрашен порошковой краской. Фотоэлементы надежно загерметизированы между 2-мя слоями этилвинилацетатной герметизирующей пленки(ЭВА). Рабочая поверхность защищается закаленным стеклом. В большинстве модулей это высокопрозрачное стекло с текстурой. Модули, которые изготавливаются на заказ также с закаленным стеклом, но гладким. Тыловая сторона модуля заламинирована полиэтилентерефталатной пленкой(ПЭТ). С обратной стороны находится и контактная коробка с электрическими контактами. По желанию заказчика модуль снабжается кабелем необходимой длины с коннекторами типа МС4 или МС3. Рядом располагается этикетка с электрическими параметрами солнечного модуля при стандартных тестовых условиях(STC).
— Беcкаркасные модули(серия МСБ) также ламинируются при помощи этилвинилацетатной пленки (ЭВА) и могут иметь в качестве подложки стеклотекстолит или не иметь подложки вовсе. Лицевая поверхность покрыта прозрачной ПЭТ пленкой, а обратная сторона стеклотекстолит или такая же пленка ПЭТ. По желанию заказчика солнечный модуль МСБ может снабжаться кабелем необходимой длины.
При производстве модулей применяются только высококачественные материалы производства РФ и стран Европы. Мы производим модули в течении 16 лет и имеем огромный опыт. Класс защиты солнечных модулей не ниже IP65. Контактная коробка в зависимости от мощности солнечного модуля снабжена двумя или тремя диодами, минимизирующими потери при затенении. В разделе «Прочее» можно приобрести специальный «солнечный» кабель и прочие принадлежности для монтажа солнечных батарей. Там же Вы можете заказать систему крепления солнечных модулей на кровле. Если Вы планируете разместить солнечные батареи на крыше автомобиля или автодома, то у нас в продаже имеется удобный монтажный комплект для этого. Ищите его в разделе «Прочее».
Вся необходимая электроника, аккумуляторы и другие аксессуары находятся в разделах: «Контроллеры заряда» , «Инверторы» и «Аккумуляторы».
Кроме того на сайте много полезной информации по истории, теории и практике солнечных батарей и фотоэлектрических систем на их основе.
Пересылка солнечных модулей осуществляется в деревянных ящиках или паллетных бортах. Для оформления заявки на покупку солнечных батареи перейдите к пункту «Сделать заказ» или напишите e-mail. Связавшись с нами Вы гарантированно получите исчерпывающую и качествунную консультацию по интересующему Вас вопросу. Мы поможем Вам спроектировать солнечную станцию любой мощности.
Все солнечные модули имеют российский сертификат соответствия ГОСТ-P № РОСС RU.МЛ07.Н00316. Гарантия на солнечные модули 5 лет.
— в температурном диапазоне –50ºС до +75ºС; |
— в диапазоне атмосферного давления до 85-107 кПа; |
— в диапазоне относительной влажности 0-100%; |
— максимальной интенсивности дождя до 5 мм/мин; |
— максимальная нагрузка снег+ветер до 2000 Па. |
Гарантируется снижение мощности за первые 10 лет эксплуатации не более чем на 10%. В течении 25 лет снижение мощности не более чем на 20%.
Источник
Характеристики солнечных батарей
Эксплуатационные характеристики солнечных панелей
Для изготовления фотоэлектрических элементов солнечных батарей используют кремний с минимальным количеством примесей менее 0,01%. Качество фотоэлементов зависит от количества примесей и цена тоже.
Существует три типа фотоэлемента – это монокристаллические, поликристаллические и тонкопленочные. Последние находятся еще на стадии разработки, поэтому их рассматривать не будем. Остановимся на сравнение характеристик монокристаллических и поликристаллических фотоэлементов.
Сравнение типов фотоэлементов
Фотопанели размещаются на открытом пространстве, поэтому на их работу будут влиять эти параметры фотопанелей;
– Температурный коэффициент мощности. Под палящим солнцем, фотоэлементы нагреваются, и теряется часть мощности солнечных батарей. В очень жаркие дни доля потери мощности составляет 25%. В случае монокристаллических и поликристаллических фотопанелей, температурный коэффициент мощности достигает -0,45%, то есть произойдет снижение мощности на -0,45%, на каждый градус прироста температуры. На температурный коэффициент мощности сильно влияет качество фотопреобразователей;
– Степень деградации LID. Деградация монокристаллов панелей происходит быстрее, чем поликристаллов. Год работы снижает мощность монокристаллических батарей до 3%, а поликристаллических до 2%. Такое уменьшение мощности наблюдается в первый год работы гелиопанелей, в дальнейшем эта деградация для монокристаллов будет 0,71%, для панелей из поликристаллов 0,67%.
Деградация зависит от качества фотоэлементов. Для панелей сомнительного качества деградация может достичь в первый год эксплуатации 20%. Поэтому панели важно выбирать не по низкой стоимости, а по производителю и качеству исполнения;
– Фотоэлектрическая чувствительность. Поликристаллические фотоэлементы не так чувствительны к снижению освещения, по сравнению с монокристаллами, но разница в чувствительности небольшая и не является критерием выбора по этому параметру;
– Эффективность панелей. Для выработки одинаковой мощности для поликристаллических панелей необходимо больше площади, т. е. эффективность поликристаллических гелиопанелей меньше монокристалических. Срок службы монокристаллов выше.
Качество солнечных панелей
По качеству исполнения фотоэлектрические элементы можно разделить на четыре категории качества.
Первая категория – Grad A. Это солнечные батареи самого высокого качества – без микротрещин, отсутствуют сколы. По внешнему состоянию эти фотоэлементы полностью одинаковы по цвету, структуре. Эта категория имеет самую малую деградацию и высокое КПД.
Вторая категория – Grad B. Эти фотопреобразователи практически не отличаются от фотоэлементов первой категории, но имеют небольшие изменения в цвете. Но у них большая деградация и меньший срок эксплуатации.
Третья категории – Grad С. Отличие от предыдущей категории – это наличие сколов и трещин, неоднородный окрас, но низкая стоимость. Для энергоснабжения частного дома такие фотопанели не следует применять из-за низкого КПД, высокой деградации и небольшого срока эксплуатации.
Четвертая категория – Grad D имеет самое низкое качество исполнения. Структура этих панелей неоднородная с видимыми дефектами. Небольшой размер фотоэлементов нуждается в дополнительной пайке, что еще ухудшает параметры. Такие элементы имеют небольшую надежность. Их устанавливать не рекомендуется даже при небольшой стоимости.
Пленка EVA. Предназначена для ламинации панелей с солнечной стороны. Она хорошо герметизирует фотоэлементы, снижает деградацию, защищает от механических повреждений, прозрачна. Срок службы этой пленки также зависит от качества исполнения и меняется от 5 до 15 лет.
Недорогая пленка со временем желтеет, теряет прозрачность, отслаивается и имеет срок эксплуатации 3-5 лет. Визуально качественную пленку отличить невозможно, это можно определить только через несколько лет ее работы.
ПЭТ пленка. Эта пленка изолирует тыльную сторону фотопанелей от влаги, пыли и механических повреждений. Качество пленки также можно определить через несколько лет по внешнему состоянию. Цвет становится желтее, появляются трещины.
Технические характеристики солнечной панели
Посмотреть их можно в инструкции на изделие. К техническим характеристикам гелиопанелей относится;
Пример характеристики солнечной панели
– Мощность солнечных панелей и размеры. Чем больше мощность, тем меньше стоимость на ватт. Для большой мощности выгоднее приобретать большие панели;
– Допустимые пределы отклонения по мощности или толеранс. Отклонение может быть положительным и отрицательным. Покажем на примере, толеранс 0 + 4 ватта;
– КПД солнечной панели. Конечно же, лучше приобретать панели с высоким КПД;
– Температурный коэффициент – это влияние температуры на такие параметры как мощность, напряжение и ток. Температурный коэффициент должен быть минимальным;
– Срок службы солнечных панелей. Отдельные производители дают 20 лет эксплуатации панелям с гарантией 5 лет. Правильная установка солнечных батарей может резко поднять эффективность. После 15 лет работы гелиопанели могут снизить производительность на 10%, а после службы в 30 лет на 20%. Хорошего качества панели могут работать в диапазоне температур -40 +90 °С.
Источник
Характеристики солнечных батарей
Солнечные батареи, которые также называют солнечными панелями или солнечными модулями, строятся из отдельных фотоэлектрических преобразователей (так называемых солнечных элементов), которые соединяются друг с другом в последовательные и параллельные цепи, в совокупности работающие как единый источник тока.
Собственно одна панель может рассматриваться как источник тока. Несколько солнечных панелей образуют автономную солнечную электростанцию, которая может быть малой (если речь идет например о частном доме) или большой (если речь идет о промышленной солнечной электростанции) мощности. Размер солнечной станции зависит от ее назначения и от нужд ее потребителя.
Одна солнечная панель обычно содержит количество элементов кратно 12, а именно: 12, 24, 36, 48, 60 или 72 солнечных элемента. Номинальная мощность одной такой панели обычно лежит в диапазоне от 30 до 350 ватт. Соответственно размер и вес панели тем больше, чем больше ее номинальная мощность.
На сегодняшний день реальный КПД солнечных батарей, доступных широкому потребителю, лежит в пределах от 17 до 23%. Есть отдельные экземпляры, декларирующие КПД до 24%, но это скорее исключения и преувеличения. Лаборатории по всему миру стремятся разработать солнечные элементы, КПД которых хотя бы приблизился к 30% — это было бы очень хорошим результатом для источника энергии данного типа, если смотреть на вещи реально.
Солнечные батареи на базе кремния, как альтернативный источник электрической энергии, проверены временем, они отличаются надежностью и безопасностью, компактностью и относительной доступностью. Срок их нормальной эксплуатации доходит до 30 лет и даже превышает. Хотя, справедливости ради стоит отметить, что кремниевые фотоэлектрические элементы со временем деградируют, это выражается в снижении получаемой при полном освещении мощности примерно на 10% от первоначального номинала за каждые 10 лет активной эксплуатации.
То есть если в 2019 году приобреталась новая солнечная панель на 300 Вт, то к 2039 году она будет способна выработать максимум 240 Вт. По этой причине следует вычислять установленную мощность системы с определенным запасом по току. Что касается тонкопленочных элементов, то они временем не проверены, но специалисты утверждают, что скорость деградации в первые же годы у них многократно выше чем у монокристаллических и поликристаллических кремниевых элементов.
При нормальной эксплуатации ни замена элементов, ни какое бы то ни было иное специальное обслуживание монокристаллическим и поликристаллическим солнечным панелям не требуется. Они просты в установке, не содержат движущихся частей, их поверхность обращенная к солнцу всегда имеет защитное механически прочное покрытие.
Вольт-амперная характеристика солнечных батарей снимается в лабораторных условиях при производстве и приводится в спецификации. Стандартный тест проводится при радиации 1000 Вт/кв.м при температуре окружающего воздуха 25°С, как на широте 45°.
Здесь можно видеть крайние точки ВАХ, в которых снимаемая с батареи мощность обращается в ноль. Напряжение холостого хода — Voc — это максимально доступное напряжение на выходе батареи при разомкнутой цепи нагрузки. Ток при коротко замкнутой цепи нагрузки — Isc – это, соответственно, ток при нулевом выходном напряжении.
Практически батарея всегда работает в неком оптимальном режиме где-то посередине между этими двумя точками. В оптимальной точке MPP — максимальная мощность нагрузки. Номинальное напряжение для точки максимальной мощности обозначается Vp, а номинальный ток для данной точки — Ip. В этой точке определяется и КПД солнечной панели.
В принципе солнечная батарея способна работать в любой точке ВАХ, однако для получения максимальной эффективности полезно использовать точку наивысшей мощности, поэтому солнечные панели никогда не питают нагрузку напрямую. Для достижения лучшей эффективности, между солнечной батареей и аккумуляторами (инвертором) следует подключить контроллер заряда с технологией MPPT, который всегда будет работать в точке максимума доступной мощности при любой текущей интенсивности солнечного освещения.
Источник