- Расчёт генератора, основные параметры и изготовление
- Активная длинна проводника
- Теперь попробуем высчитать напряжение генератора, но сначало разберемся с катушками генератора
- Ниже схема соединения однофазного генератора
- Соединение катушек
- Соединение катушек трехфазного генератора
- Соединение катушек
- Теперь поговорим про ток генератора, его сопротивление и соединение звездой и треугольником
- Таблица сопротивления медного провода
- Предварительный шаблон генератора
- Рисунок генератора
- Размеры катушки
- Расчёт генератора для ветряка
- Расчёт диаметра дисков генератора
- Расчёт размеров статора и катушек
- Расчёт катушек сколько поместится витков провода
- Расчёт Напряжения, сопротивления, и мощности генератора
- Расчёт мощности генератора
- Расчёт винта для ветрогенератора
Расчёт генератора, основные параметры и изготовление
Для расчёта напряжения генератора воспользуемся простой формулой, она очень простая и не должна вызвать проблем. Подробнее с примером можно почитать здесь — Расчёт ЭДС генератора. Про фазы и соединения катушек будет ниже, а пока разберемся с напряжением генератора.
Формула E=B·V·L где: Е-напряжение генератора (V). B-магнитная индукция магнитов(Тл). V-скорость движения магнитов (м/с). L-активная длина проводника (м).
С буквой Е — это напряжение генератора, которое нам нужно вычислить, а далее буква В — которая не известна, так-как мы не знаем какая магнитная индукция магнитов. Но если помучить поисковик и почитать форумы, то можно узнать что магнитная индукция неодимовых магнитов около 1,25Тл, конечно она разная для разных марок магнитов, но это среднее значение. Так-же известно что чем дальше от магнита — тем меньше и магнитная индукция. В общем если в случае изготовления дискового генератора расстояние между магнитами на противоположных дисках будет равно толщине магнитов, то магнитная индукция будет примерно 1.0Тл, если расстояние больше, то естественно магнитное поле будет слабее. Если к примеру у вас магниты толщиной 10мм, и вы делаете расстояние между магнитами 10мм, то индукция будет где то 1.0Тл, а статор в этом случае получится не более 8мм толщиной, и по 1мм на зазоры. Если расстояние будет скажем 12-14мм, то магнитная индукция упадет до 0.8-0.7Тл и ниже.
Для генераторов с железом принцип такой-же, но толщина магнитов может быть разная, некоторые ставят магниты толщиной 10-15мм, хотя для магнитной индукции в 1.0Тл достаточно толщины магнитов 3-4мм. Ещё важна толщина — магнито-пропускаемость статора, на зубы которого наматываются катушки. Если переборщить с толщиной магнитов то статор не сможет замкнуть всё магнитное поле и оно выйдет наружу, и к статору снаружи будет магнитися железо. То-есть это потери магнитного поля и нет смысла использовать слишком мощные магниты так-как часть магнитного поля не будет использоваться. Все конечно зависит от конкретных условий, но если не известна магнитная индукция, то лучше её брать как 0.8-1Тл.
Вернемся к формуле, V — это скорость движения магнитов, рассчитать её очень просто. К примеру если диаметр ротора с магнитами у нас 20см, то 20*3.14=62.8см. То-есть получается что за один оборот магниты проходят расстояние 62.8см или 0.62метра. Если диаметр ротора 8см, то аналогично 8*3.14=25.12см или 0.25м.
L — это активная длина проводника, то-есть это та длинна медного провода, которая попадает под магниты, ведь именно только тот участок провода вырабатывает электричество, который попадает под магнитное поле магнитов. Для дисковых аксиальных генераторов длинна активного проводника равна длинне магнитов. К примеру если у вас круглые магниты размером 30*10мм, то L=30мм, ну а если прямоугольные размером 50*30*10мм, то L=50мм. Для генераторов с железным статором активная длинна проводника равна ширине статора.
Активная длинна проводника
Теперь попробуем высчитать напряжение генератора, но сначало разберемся с катушками генератора
Ниже схема соединения однофазного генератора
Соединение катушек
Соединение катушек трехфазного генератора
Соединение катушек
Вернёмся к формуле E=B·V·L. К примеру планируется намотать 18 катушек проводом 1.0 мм, и в катушку помещается по 80 витков, значит всего у нас витков 18*80=1440 витков. Если генератор однофазный то так и считаем по всем катушкам, а если трёхфазный то будем брать катушки одной фазы, в данном случае шесть катушек в фазе, а потом вычислим данные при соединении звездой или треугольником. Я буду считать трёхфазный, по этому беру шесть катушек 80*6=480витков.
Магниты у нас к примеру 30*10мм (по 12шт на диске), значит активная длинна проводника 0.03м, если статор железный, то берётся ширина статора. Диски с магнитами у нас к примеру диаметром 20см, но надо брать диаметр по центру магнитов, значит минус 1,5см по кругу и того 20-3см=17*3.14=53.38см или 0.53м. Хочу напомнить что толщина железных дисков должна быть не менее толщины магнитов, иначе магнитное поле выйдет за железо и не будет участвовать в выработке электричества и магнитная индукция будет ниже, а если у вас к примеру ротор асинхронного двигателя, то после проточки желательно одеть металлическую гильзу и на неё клеить магниты, или вытачивать цельно-металлический ротор, так магниты будут использоваться эффективнее и можно или получить больше мощности или сэкономить на толщине магнитов.
И так теперь у нас есть необходимые данные для расчёта напряжения генератора к примеру при 60об/м. Магнитную индукцию возьмём равной 1Тл. Скорость движения магнитов у нас за оборот 0.53м, значит при 60об/м будет 1об/с, то-есть 0.53м/с — скорость движения магнитов. Активная длинна проводника нам тоже известна и равна 0.03м. Тогда 0.03м нужно умножить на количество витков в катушке (80) и на количество катушек (6), и получится 0.03*480=14.4м.
Теперь представляем значения в формулу E=B(1Тл)*V(0.53м)*L(14.4м), получается E=7.632V. В общем при 60об/м получается напряжение фазы 7.6 вольт. Напряжение генератора растёт линейно в зависимости от оборотов, значит при 120об/м будет 15.2 вольта, а при 240об/м будет 30.4 вольт. А при 300об/м будет 38.0 вольт. Зарядка начнётся при 120об/м если соединить фазы генератора треугольником. При соединении звездой напряжение генератора будет выше в 1,7 раза, значит зарядка начнётся ещё раньше, при 90об/м.
Но если нарисовать виртуальный статор с катушками и магнитами, то можно увидеть что магнит не перекрывает собой полностью катушку и 30% активной зоны не перекрывается как бы не стоял магнит, а это значит что 30% не участвует в выработке напряжения и это надо учитывать. Часто получается так что магнит перекрывает только половину катушки, и это значит что только половина витков участвует в выработке электричества. Значит в нашем случае напряжение будет ниже на 30% чем получилось, то-есть не E=7.632V, а E=5V.
Теперь поговорим про ток генератора, его сопротивление и соединение звездой и треугольником
Чем меньше сопротивление — тем выше сила тока зарядки и меньше потерь на нагрев, по-этому сопротивление обмотки генератора нужно делать как можно меньше. В нашем генераторе состоящем из 18 катушек всего 18*80=1440 витков, это по 480 витков в фазе. Чтобы узнать сопротивление фазы нужно узнать длинну провода в фазе и его сечение. Длина одного витка в среднем примерно 0.08м, значит 0.08*480=38.4м. Сопротивление одного метра медного провода сечением 1мм равно 0.0224Ом. Далее 38.4*0.0224=0.86Ом.
Таблица сопротивления медного провода
Чтобы узнать какой будет ток зарядки аккумулятора нужно знать напряжение генератора и его сопротивление, что мы уже знаем. Чтобы вычислить нужно от напряжения холостого хода генератора отнять напряжение генератора, и полученную сумму разделить на сопротивление, и получится ток зарядки. К примеру у нас при соединении звездой при 120об/м напряжение в холостую равно 10V*1.7=17 вольт. Тогда от 17 вольт отнимем напряжение аккумулятора 17-13 вольт и получим разницу в 4 вольта, разделим на сопротивление 1,46Ом, и получим 4:1.46=2.7Ампер. И так можно вычислить силу тока на каждых оборотах генератора, а чтобы получить мощность зарядки нужно амперы умножить на вольты, в данном случае 2.7*13=35.1 ватт*ч. А уже при 240об/м напряжение в холостую будет в два раза больше, так-как растёт линейно, тогда уже 20V-13=7:1.46=4.7 Ампер.
Но здесь играет роль не только сопротивление самого генератора, но и сопротивление провода от генератора до аккумулятора, сопротивление диодного моста, на котором падает до 1вольт напряжения, и сопротивление самого аккумулятора. Все это высчитать можно, но довольно сложно. Так-же изменяется сопротивление генератора во время работы, по-этому сумма общих потерь может составлять до 50% от мощности, и в итоге ток зарядки может оказаться в два раза меньше расчетного. И так-как это трудно все учесть на потери в среднем можно скинуть 30%, значит реально а аккумулятор пойдёт ток не 4.7Ампер при 240об/м, а значительно ниже, около 3.5-4 Ампера.
Такой расчёт дает примерное представление о будущем генераторе, но все-же это лучше чем делать как получится ничего не считая, и потом удивляться тому что или напряжение слишком низкое или высокое, или сопротивление слишком большое и смешной ток зарядки. Просчитав свои генераторы я убедился в справедливости такого расчёта генератора.
При расчете генератора нужно учитывать что его будет крутить ветроколесо ветрогенератора, и у ветроколеса есть свои обороты, и генератор нужно хоть примерно делать под будущий винт. Если это будет вертикальный ветряк, то его ветроколесо вращается очень медленно по сравнению с горизонтальным винтом. И в связи с этим нужно чтобы зарядка начиналась на очень низких оборотах генератора. Чтобы зарядка начиналась рано нужно чтобы напряжение было выше напряжения аккумулятора, отсюда нужно в катушках иметь как можно больше витков. Но чем больше витков тем длиннее провод, а значит и сопротивление, а сопротивление определяет силу тока зарядки. В итоге чтобы генератор был мощный и рано начиналась зарядка, нужно его рассчитать так чтобы и мощность была, и ветроколесо не перегрузить — иначе оно не выйдет на свои обороты и не наберет мощности.
С горизонтальным винтом генератор нужен не такой большой и материалоемкий как для вертикального, у горизонтальных винтов обороты в среднем в 5 раз выше, от этого и генератор нужен в пять раз меньше и во столько же раз дешевле. Расчёты витроколёс есть в даругих статьях из раздела «Расчёты ветряков». Советую вам и с этим материалом ознакомится, так-как ветрогенератор это единый механизм и его узлы должны быть подходящими по параметрам друг для друга, иначе или винт слишком мощный и малооборотистый или генератор слишком мощный, и толку от такого ветряка будет мало.
Предварительный шаблон генератора
Рисунок генератора
Размеры катушки
Чтобы подогнать генератор под ветроколесо или наоборот потом ветроколесо под генератор нужно высчитать мощность генератора на разных оборотах, к примеру при 120об/м когда начнётся зарядка аккумулятора, и начнётся нагрузка на ветроколесо, и далее при 180,240,300,360,420,480,540,600об/м.
Исходя из выше рассчитанных данных мы получили 17вольт при 120об/м, сопротивление у нас 1.46Ом. более точные данные будут если мерить напряжение во время зарядки в реальном времени, но я для малого тока взял напряжение аккумулятора равным 13 вольт, а далее исходил из напряжения 14 вольт. В итоге ниже получились вот такие расчёты, но на более высоких оборотах при большой разнице холостого напряжения и напряжения при заряде аккумулятора КПД генератора будет падать и ток зарядки опять-же не будет таким большим, хотя генератор будет грузить винт на большую мощность, потери будут на нагреве катушек и в проводах. В общем ток зарядки будет ниже ещё на 10-20%.
при 120об/м — 17-13=4:1.46=2.7А*13=35ватт
при 180об/м — 25.5-14=11.5:1.46=7.8А*14=110ватт
при 240об/м — 34-14=20:1.46=13.6А*14=190ватт
при 300об/м — 42.5-14=28.5:1.46=19.5А*14=273ватт
при 360об/м — 51-14=37:1.46=25.3А*14=354ватт
при 420об/м — 59-14=45:1.46=31А*14=436ватт
при 480об/м — 68-14=54:1.46=36.9А*14=516ватт
при 600об/м — 85-14=71:1.46=48.6А*14=680ватт
Но ветроколесо желательно при расчёте делать на 30% мощнее чем расчетные данные генератора, и так чтобы на низких оборотах ветроколесо было чуть мощнее генератора. У нас при 120об/м 35ватт с генератора, значит ветроколесо должно при 120об/м иметь мощность около 40-50ватт. Если ветроколесо будет слабее, то генератор не позволит ему раскрутится до своих оборотов и в итоге обороты будут ниже и мощность тоже. Подробнее про расчёты ветроколес смотрите статьи в разделе, там всё есть.
Источник
Расчёт генератора для ветряка
Расчёт мощности генератора строится по закону Ома, характеристики генератора зависят от выходного напряжения, и сопротивления фаз генератора. Задача спроектировать генератор так, чтобы он работая в паре с ветроколесом (винтом), был максимально эффективен. Я хочу получить максимально возможное на ветре 4-7м/с, но чтобы зарядка АКБ начиналась как можно раньше, желательно с 2м/с.
Расчёт дискового аксиального генератора должен начинаться с чертежей, чтобы понять какой диаметр дисков нужен, какие размеры катушек, и какого диаметра заливать смолой статор генератора. Без рисования ничего не получится, а рисовать можно хоть на бумаге (вспомнив уроки геометрии), или на компьютере. Но потом всё равно придётся рисовать на фанере, чтобы точно разместить катушки перед заливкой статора.
Все размеры генератора строятся исходя из размеров магнитов. Я купил 16 магнитов размером 50×30×10 мм, магниты дорогие, поэтому денег хватило только на 16 штук. Вкратце скажу что прямоугольные магниты лучше чем круглые, и чем крупнее магниты, тем потом легче делать катушки, так-как и катушки тогда тоже будут по размерам крупнее. Генератор трёхфазный, по этому если магнитов 16шт, то будет по 8 шт на дисках, а катушек 12шт,
Расчёт диаметра дисков генератора
Оптимальное расположение магнитов по кругу должно быть с расстоянием между магнитами равным половине ширины магнитов. У меня магниты 50×30×10 мм. Ширина магнитов 30 мм, прибавляем половину ширины (30+15=45 мм), и умножаем на 8 магнитов, и делим на π(3.14). Внутренний диаметр по магнитам (30+15*8:π= 114.5 мм) равен 114мм. Чтобы узнать внешний диаметр нужно прибавить высоту магнитов, у меня высота магнитов 50 мм. Значит (114+50+50=214 мм). Теперь я знаю диаметр дисков, я сделаю диски диаметром не 214 мм, а 220 мм, добавлю 6мм в диаметре.
Для примера: если вы хотите например поставить по 12 магнитов на дисках, а магниты размером 40×40×10 мм, то тогда получится (40+20*12:π+40+40) диаметр 309мм. Или если магниты 45*25*8 мм, то (45+22,5*12:π+45+45) диаметр дисков получится 347 мм. В общем не важно какие по размерам магниты, и их число по кругу, диаметр дисков строится от ширины магнитов, и расстояния между магнитами должно быть равным половине ширины магнитов.
У меня получилось вот так, я рисовал не на бумаге, а в планшете. Потом снова придётся рисовать уже на реальных дисках. Я думаю проблем с разметкой на дисках быть не должно, размечается диск на секторы, в моём случае на 8 секторов, и наклеиваем магниты.
Расчёт размеров статора и катушек
Теперь вычислим размеры статора и катушек. Так-как у нас внешний диаметр по магнитам 214мм, то рисуем круг диаметром 214мм. Высота магнитов 50 мм, значит (214-50-50=114 мм), рисуем второй круг внутри первого диаметром 114мм. Катушек у нас должно быть 12 штук, значит делим круг на 13 секторов, это по 30° на сектор.
В каждый сектор должна поместится катушка, при этом внутреннее отверстие катушки по высоте должно быть равно высоте магнита, то-есть 50 мм. А внешняя высота будет зависеть от ширины намотки катушки, А ширина катушки должна быть равна размерам сектора. Ниже на рисунке я думаю всё понятно.
Катушки треугольной формы будут лучше, так-как чем прямей витки тем выше эффективность катушки.
Расчёт катушек сколько поместится витков провода
Теперь когда нам известны размеры катушек тот можно подумать каким проводом мотать катушки и сколько витков поместится. Если магниты шириной 10мм, то статор должен быть по ширине 8 м, так-как расстояние между магнитами на противоположных дисках должно быть 10 мм. Но я хочу сделать статор толщиной 10 мм, а расстояние между магнитами получится тогда 12 мм. Статор толщиной 10 мм, и по 1мм это зазор между статором и магнитами.
Ширина борта катушки у меня получилась 14 мм, можно сделать и меньше, можно чуть больше уменьшив внутреннее отверстие катушки. Я выбрал оптимально 14 мм. Если мотать проводом диаметром 1 мм, то поместится ровно 14 витков по ширине борта катушки. Толщина статора 10 мм, значит и толщина катушки 10 мм, но так как провод начала катушки выходит сбоку, то он съедает 1мм, и остаётся 9 мм. Таким образом размеры под витки провода 14*9мм, это 126 витков.
Если провод будет например 1,5 мм в диаметре, то поместится (14:1.5=9.3), (9:1.5=6), (6*9=45) 45 витков. Думаю с этим понятно, есть площадь, а сколько витков поместится зависит от диаметра провода.
Расчёт Напряжения, сопротивления, и мощности генератора
Напряжение генератора зависит от магнитной индукции магнитов (Тл), скорости движения магнитов, количества витков в катушках, и длины активного проводника. Напряжение или будет правильней — ЭДС (электродвижущая сила) зависит от магнитной индукции магнитов. Неодимовые магниты имеют индукцию на поверхности магнита 1.2-1.6 Тесла. Но какая индукция будет в зазоре между магнитами мы не можем знать, если у нас нет измерителя. Поэтому при расчёте генератора если расстояние между магнитами равно ширине магнитов, то магнитную индукцию магнитов можно брать как 0.8-1 Тл. Ели магниты марки N35 то 0.8Тл, если N52 то 1Тл, но в реальном генераторе может быть всё не так.
Если расстояние больше то понятно что магнитная индукция в зазоре будет ниже, ну а если ближе то выше. Магнитная индукция магнитов нужна при расчёте напряжения генератора. Формула расчёта ЭДС генератора выглядит так:
Формула E=B*V*L где:
(B) — я буду брать как 0.8 Тл, так как мгниты у маня толщиной 10мм, а зазор между магнитами 12 мм, если будет больше то хорошо,а так будем исходить из меньшего.
(V) — скорость движения магнитов зависит от длины окружности, по которой они описывают круг за один оборот. В с лучае с дисковым генераторам окружность берётся по середине магнитов. У нас как мы помним внешний диаметр по магнитам 214 мм, значит по середине магнита диаметр будет (214-2,5-2,5=209 мм). Чтобы узнать длину окружности воспользуемся формулой 2*πr^2 2*(3.14*(104*104)=339 мм), то есть 0.34 метра.
(L) — Активная длина проводника это та часть, которая попадает под магнит. У меня магнит по высоте 50 мм, значит активная длина 50 мм, или 0.05 метра.
Теперь соберём полученные цифры, (0.8*0.34*0.05=0.0136V), напряжение одного витка у нас получилось 0.0136V. В катушках у нас по 126, а катушек в одной фазе 4, значит (0.0136*126*4=6.8V). Таким образом напряжение одной фазы генератора при 60об/м будет 6.8 вольта. При соединении фаз звездой напряжение возрастёт в 1.7 раза,и составит 11.5 вольт. Напряжение линейно зависит от скорости движения магнитов, по этому если увеличить скорость в 5 раз, то и напряжение увеличится в 5 раз, если в 10 раз увеличить скорость, то напряжение увеличится в 10 раз. Например при 600 об/м напряжение составит 115 вольт, а при 300 об/м 57.5 вольт.
Сопротивление фазы генератора рассчитывается очень просто, нужно вычислить общую длину медного провода в фазе. У меня средняя длинна витка в катушках равна примерно 0.16 метра, значит (0.16*126*4=80.64 м). В фазе 80.64 метра провода, провод диаметром 1 мм, сопротивление одного метра провода сечением 1 мм равно 0,0224 Ом. Значит (80.64*0.0224=1.8 Ом). Сопротивление проводов различного диаметра можно посмотреть здесь Таблица сопротивлений медного провода
Расчёт мощности генератора
Теперь зная напряжение генератора, и сопротивление обмотки можно вычислить мощность генератора при разных оборотах. Напряжение генератора будет проседать до напряжения аккумулятора, а сила тока при просадке напряжения будет зависеть от сопротивления обмотки генератора. Например при 300 об/м напряжение генератора соединённого звездой 57.5 вольт, отнимем напряжение аккумулятора (13V), тогда (57-13=44V). То-есть при 300 об/м напряжение генератора при заряде акб просядет на 44 вольта. А ток заряда заряда АКБ зависит от сопротивления обмоток. При соединении звездой сопротивление увеличивается в два раза от сопротивления одной фазы, по-этому сопротивление (1.8*2=3.6 Ом). Теперь делим 44 на 3.6 и получим (44:3.6=12.2А). В итоге при 300 об/м ток зарядки АКБ составит 12.2А, а мощность (12.2*13=158 ватт).
Вот так можно вычислить мощность на любых оборотах. Но нужно ещё помнить про КПД генератора, чем больше просадка напряжения тем ниже КПД. При садке напряжения на треть КПД около 80%, а дальше он только ухудшается. Это нужно помнить при расчёте винта, чтобы подобрать правильно мощность винта, чтобы она соответствовала мощности генератора.
У меня получилась вот такая картина по мощности генератора соединённого звездой.
Начало заряда при 70 об/м 13,7 вольта.
обороты/напряжение ХХ/ток заряда/мощность
60/11,5//0/0/
120/23/2,7/36
180/34/6/77
240/46/9/120
300/57/12/160
360/69/15/202
420/80/19/243
480/92/22/285
540/103/25/326
600/115/28/368
В итоге при соединении звездой мощность не впечатлила, и слишком рано начинается зарядка АКБ. Быстроходный винт подобрать не получается, а с тихоходным обороты получаются низкие. Вообще вот когда вы рассчитаете мощность генератора, только после этого нужно подбирать винт. Винт нужно смотреть в программе, смотреть на мощность винта, его обороты, быстроходность, КИЭВ, и подгонять под генератор.
Этот генератор будет работать на АКБ 24 гораздо лучше при соединении фаз звездой, на я собираюсь заряжать 12в АКБ, по-этому придётся генератор соединить треугольником. При этом сопротивление генератора станет равно фазному, это 1.8 Ом, и напряжение станет равно напряжению одной фазы, то-есть 6.8 вольт.
Значит начало заряда при 120 об/м,
обороты/напряжение ХХ/ток заряда/мощность
120/13.6/0/0
180/20/4/53
240/27/7.8/102
300/34/11.6/151
360/41/15.5/200
420/47/19/249
480/54/23/300
540/61/27/350
600/68/30/400
Расчёт винта для ветрогенератора
Теперь когда параметры будущего генератора известны можно рассчитать винт для него. В программе по расчёту лопастей из ПВХ труб я прикинул винт диаметром 2,6 метра, с быстроходностью Z7. Я долго подгонял размеры винта, и размеры лопастей чтобы и зарядка начиналась как можно раньше, и чтобы винт был максимально эффективен в широком диапазоне.
Начало зарядки акб у меня получилось при 2,5 м/с. При 4 м/с мощность ветрогенератора составит 50-55 ватт, при этом мощность винта при 180 об/м составит 75 ватт. Запас по мощности это на КПД генератора. При 5 м/с мощность ветрогенератора составит около 100 ватт. А при 6 м/с будет уже 200 ватт, и винт будет иметь максимальный КИЭВ 0.45, обороты при этом 300-310 об/м. При 10 м/с с падением КИЭВ до 0.27 винт сможет раскрутить генератор до 600-650 об/м. Мощность у винта при этом будет около 850 ватт, а генератор сможет дать около 500 ватт мощности.
В общем с этим винтом ветрогенератор получится мощностью 500 ватт при 10 м/с, и максимальная эффективность будет при ветре 5-7 м/с. При этом работать ветряк будет с 2,5 м/с. Стартовый момент таких быстроходных лопастей очень низкий, всего 0.13 Нм, но так-как генератор не имеет залипания я думаю проблем со стартом не будет, и ветряк будет запускаться с 2-3м/с.
Ниже скриншоты из программы по расчёту лопастей. Первый это основные данные винта, а второй это данные для вырезания лопасти из трубы.
При подборе винта для генератора нужно понимать что у винта есть быстроходность, обороты, и КИЭВ, который изменяется. Например Я сначало взял винт диаметром 3 метра, посмотрел и понял что у винта не хватает оборотов при хорошем КИЭВ. Если увеличивать быстроходность то КИЭВ резко падает, а при среднем и сильном ветре у вита перебор по мощности так-как он не может крутить генератор быстро. То-есть несоответствие мощности винта и генератора, от этого общий КПД ветрогенератора очень низкий.
Тогда я стал уменьшать диаметр сначала добившись чтобы при ветре 3-4 м/с мощность генератора и винта была одинаковой. Я уменьшил винт до 2,4 метра, и поставил 5 лопастей. При слабом ветре 3-4 м/с стало не плохо, КИЭВ 0,45, но оборотов маловато. Тогда я оставил три лопасти и поднял диаметр до 2.6 метра. При этом я получил и хороший показатель на ветре 3-4 м/с с оборотами при этом ветре 120-180 с КИЭВ 0,35-0,40. И максимальная эффективность достигается при 6 м/с с КИЭВ 0,45. При этом винт максимально быстроходный, и так-сказать тяговитый в широком диапазоне ветра, и быстроходности.
Если бы я сделал тихоходный пяти-лопастной винт, то я бы получал на 30% меньше энергии в сравнении с этим трёх-лопастным. Шести-лопастной дал бы результат ещё, так-как у него обороты в два раза ниже чем у трёх-лопастного. По-этому я отказался от тихоходных винтов, что я зря такие деньги потратил на магниты, провод и прочее, чтобы потом получать намного меньше чем это возможно.
Хотя если сделать двухлопастной винт, ро можно ещё на 30% увеличить обороты и мощность ветрогенератора. Но тогда придется делать всё очень точно и сбалансировано, иначе будут вибрации при работе, что очень не приятно. Также двух и однолопастные винты сильно «колбасит» при разворотах, и это тоже неприятно. По-это трёхлопастной винт это оптимально для ветрогенератора, что в принципе давно определили производители.
Следующий этап это по имеющимся размерам сделать чертежи деталей генератора, об этом в следующей части. Чертежи деталей для генератора
Источник