Производство фотоэлементов для солнечных батарей

Производство фотоэлементов для солнечных батарей

Основой любой установки в фотовольтаике всегда является фотоэлектрический модуль. Фотоэлектрический модуль — это комбинация электрически соединенных между собой фотоэлементов. Термин фотовольтаик состоит из двух слов «фото» (от греч. свет) и «вольт» (Алессандро Вольта — 1745-1827, итальянский физик) — единица измерения напряжения в электротехнике. Анализируя термин фотовольтаик, можно сказать — это преобразование света в электричество.

Фотоэлектрический элемент (фотоэлемент) используется для получения электроэнергии за счет преобразования солнечного излучения. Фотоэлемент можно рассмотреть как диод, состоящий из полупроводников n-типа и p-типа с образованной зоной, обеднённой носителями, поэтому неосвещенный фотоэлемент подобен диоду и может быть описан как диод.

Для полупроводников, имеющих ширину запрещенной зоны между 1 и 3 эВ, максимальное теоретическое КПД может быть достигнуто 30%. Ширина запрещенной зоны и есть минимальная энергия фотона, которая способна поднять электрон из валентной зоны в зону проводимости. Наиболее распространенными из выпускаемых промышленностью солнечных элементов являются кремневые элементы.

Монокристаллины и поликристалинны кремния. Кремний на сегодняшний день является одним из самых распространенных элементов для производство фотоэлектрических модулей. Однако из-за маленькой абсорбции солнечного излучения, солнечные элементы из кристалла кремния изготавливаются обычно шириной 300 мкм. КПД фотоэлемента из монокристалла кремния достигает 17%.

Если взять фотоэлемент из поликристалла кремния, то для него КПД лежит на 5% ниже, чем из монокристалла кремния. Граница зерен поликристалла является центром для рекомбинации носителей зарядов. Размер кристалла поликристаллина кремния может колебаться от нескольких мм до одного см.

Читайте также:  Солнечные батареи для насоса бассейна

Арсенид галия (GaAs). Солнечные элементы из арсенида галлия в лабораторных условиях уже показали КПД, равный 25%. Арсенид Галлия, разработанный для оптоэлектроники, сложно производить в больших количествах и для солнечных элементов является достаточно дорогим. Солнечные элементы из арсенида галлия применяются совместно с солнечными концентраторами, а так же для космонавтики.

Тонкопленочные фотоэлементы технологии. Основным недостатком кремневых элементов является их высокая стоимость. Имеются тонкопленочные элементы, которые изготовляются из аморфного кремния (а-Si), телурида кадмия (CdTe) или купрум-индиум диселинида (CuInSe2). Преимущество тонкопленочных фотоэлементов – экономия сырья и материалов и более дешевое производство по сравнению с кремнивыми фотоэлементами. Поэтому можно сказать, что тонкопленочные изделия имеют перспективы для применения в фотоэлементах.

Недостатком является, что некоторые материалы являются достаточно токсичными, поэтому безопасность продукции, а так же “recycling” играют важную роль. Кроме того, теллурид является исчерпаемым ресурсом, по сравнению с кремнием. КПД тонкопленочных фотоэлементов достигает 11 % (CuInSe2).

В начале 60-х годов фотоэлементы приблизительно стоили 1000$/Вт пиковой мощности и изготавливались главным образом в космосе. В 70-х годах начался серийный выпуск фотоэлементов, и их цена снизилась до 100$/Вт. Дальнейший прогресс и снижение стоимости фотоэлементов сделали возможным использование фотоэлементов для бытовых нужд. Особенно для части населения, живущего далеко от линий электропередачи и стандартного электрообеспечения, фотоэлектрические модули стали хорошей альтернативой.

На фото — первая солнечная батарея на основе кремния. Ее создали, ученые и инженеры американской компании Bell Laboratories в 1956-м году. Солнечная батарея представляет собой комбинацию электрически соединенных между собой фотоэлектрических модулей. Комбинация выбирается в зависимости от необходимых электрических параметров как ток и напряжение. Одна ячейка такой солнечной батареи, производившая менее 1 ватт электроэнергии, стоила 250 долларов. Вырабатываемая электроэнергия была в 100 раз дороже, чем из обычной сети.

Почти 20 лет солнечные батареи использовались только для космоса. В 1977 году стоимость электроэнергии удалось снизить до 76 долларов за 1 ваттную ячейку. Постепенно КПД повышалось: 15% в середине 90-х годов прошлого века и 20% к 2000 году. Современные наиболее актуальные данные по этой теме — Эффективность солнечных фотоэлементов и модулей

Производство фотоэлементов из кремния можно условно разделить на три основные стадии:

производство кремния высокой степени чистоты;

изготовление тонких кремниевых шайб;

Основным сырьем для производства кремния высокой степени чистоты является кварцевый песок (SiO2). С помощью электролиза расплава получают металлургический кремний, который имеет степень чистоты до 98%. Процесс восстановления кремния происходит при взаимодействии песка с углеродом при высокой температуре 1800 °С:

Такая степень чистоты недостаточна для производства фотоэлемента, поэтому он подлежит дальнейшей обработке. Дальнейшее очищение кремния для полупроводниковой индустрии осуществляется практически по всему миру с помощью технологии, разработанной фирмой Siemens.

«Siemens процесс» представляет собой очищение кремния путем взаимодействия металлургического кремния с соляной кислотой, в результате чего получают трихлорсилан ( SiHCl3):

При температуре 30 °С трихлорсилан (SiHCl3) находится в жидкой фазе, поэтому он легко отделяется от водорода. Далее, неоднократная дистилляция трихлорсилана повышает его чистоту до 10 -10 %.

Последующим процессом — пиролизом из очищенного трихлорсилана получают поликристаллический кремний высокой степени чистоты. Полученный поликристаллический кремний не совсем удовлетворяет условиям для использования в полупроводниковой индустрии, однако, для солнечной фотоэлектрической индустрии качество материала предостаточно.

Поликристаллический кремний является сырьем для производства монокристаллического кремния. Для производства монокристаллического кремния применяются два способа – метод Чохральского и метод зонного плавления.

Метод Чохральского является энергоемким, а также материалоемким. Сравнительно небольшое количество поликристаллического кремния закладывается в тигель и в вакууме расплавляется. Небольшая затравка монокремния опускается на поверхность расплава и затем, закручиваясь, поднимается, вытягивая за собой слиток цилиндрической формы, за счет силы поверхностного натяжения.

В настоящее время диаметры вытягиваемых слитков доходят до 300 мм. Длина слитков диаметром 100-150 мм достигает 75-100 см. Кристаллическая структура вытянутого слитка повторяет монокристаллическую структуру затравки. Увеличение диаметра и длины слитка, а также усовершенствование в технологии его распилки позволят уменьшить количество отходов, тем самым, удешевить стоимость получаемых фотоэлементов.

Ленточная технология. Технологический процесс, разработанный Mobil Solar Energy Corporation, основан на вытягивании из расплава кремниевых лент и формировании на них фотоэлементов. В расплав кремния погружается частично матрица и благодаря каппилярнному эффекту, поликристаллический кремний поднимается, образуя ленту. Расплав кристаллизуется и вынимается из матрицы. Для увеличения производительности конструируется оборудование, на котором возможно получать до девяти лент одновременно. В результате получается девятиугольная призма.

Преимущество лент в том, что они малоотходны из-за того, что исключается процесс резки слитка. К тому же можно легко получать фотоэлементы прямоугольной формы, в то время как круглая форма монокристаллических пластин не способствует хорошей компоновки фотоэлемента в фотоэлектрическом модуле.

Полученные поликристаллические или монокристаллические кремниевые стержни далее должны быть распилены на тонкие шайбы, толщиной 0,2 – 0,4 мм. При распиливании стержня монокристаллического кремния на потери уходят порядка 50% материала. Далее круглые шайбы, не всегда, но зачастую, обрезают для получения квадратной формы.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Источник

Технология изготовления солнечных панелей.

Всё большей популярности набирает потребление энергии солнца, что неизменно влечет за собой увеличение спроса на оборудование, которое преобразует солнечное излучение в электроэнергию. Самым распространенным методом получения таковой считается фотовольтаика. Разумеется, одной из причин есть то, что производство солнечных батарей базируется на использовании кремния. Этот химический элемент – второй по численности на земном шаре.

Сейчас на рынке солнечных батарей функционируют огромные мировые компании, которые имеют многомиллионные обороты и многолетний опыт. Технологии, положенные в основу производства, из года в год совершенствуются. Вы с легкостью найдете солнечную батарею, которая вам нужна. Будь то устройство для автомобиля, микрокалькулятора или освещения дома. Если приобрести одиночный фотоэлемент, вы заметите, что у них очень маленькая мощность. Потому чаще их соединяют в солнечный модуль. Давайте разбираться, как.

Технология изготовления солнечных панелей.

Она делится на этапы, разберем каждый из них:

Конечно же, первое, с чего начинается абсолютно любое производство, и не только солнечных панелей, это с подготовки сырья (материала). Как говорилось ранее, в основном панели делают из кремния, а если быть точнее, то из кварцевого песка определенной породы. Технология подготовки материала включает два процесса:

  1. Высокотемпературное плавление.
  2. Синтез с добавлением разнообразных химических элементов.

После прохождения этих процессов можно достигнуть очищения кремния до 99,99 %.

Чаще всего для производства солнечных панелей берут поликристаллический или монокристаллический кремний. И хоть технология производства у них разная, тем не менее получение поликристаллического кремния считается более экономной. Поэтому, выбираю солнечную батарею из такого сырья, вы заплатите за нее меньше.

После очистки кремния, его режут тонкими пластинами, которые потом пройдут тестирование. Производится оно путем замера электропараметров с помощью световой вспышки ксеноновой лампы очень высокой мощности. По окончанию испытаний пластин, их отправляют на следующий этап.

  • На втором этапе пластины спаивают в секции, после чего из них формируют блоки на стекле. Чтобы перенести эти секции на стекло, используются держатели из вакуума. С их помощью исключается механическое воздействие на готовый солнечный элемент. Обычно секции состоят из 10 элементов, а блоки из 4 секций, реже – из 6.
  • Блоки, которые получили на втором этапе, ламинируются с помощью этиленвинилацетатной пленки и специального защитного покрытия. Компьютерное управление позволяет проследить за температурой, давлением и уровнем вакуума, а также запрограммировать условия для ламинирования.
  • Это последний этап производства солнечных панелей. Заключается он в монтировании алюминиевой рамы и соединительной коробки. Специальный клей-герметик обеспечивает надежное соединение модуля и коробки. Потом солнечные батареи тестируют, измеряя ток короткого замыкания, напряжение точки максимальной мощности и напряжение холостого хода.

Оборудование для производства солнечных батарей.

В производстве солнечных панелей используют только лучшее оборудование. Благодаря высокому качеству оборудования достигается минимальная погрешность при тестировании и измерении показателей. Также это гарантирует более длительный срок эксплуатации, что в свою очередь снижает затраты на покупку нового оборудования. Низкое же качество влечет за собой нарушения в технологии производства.

Основное оборудование, которое используют при изготовлении солнечных панелей:

  • Инструмент для резки ячеек. Ячейки режутся с помощью волоконного лазера. Размеры можно задать с помощью различных программ.
  • Ламинатор. Название говорит само за себя.С его помощью ламинируют солнечные элементы. Имеет специальные контроллеры для поддержки выбранных параметров. Ламинаторы работают в двух режимах: ручном и автоматизированном.
  • Столик для перемещения. Очень сложно обойтись без данного предмета. Именно на нем производят такие операции, как обрезка краев, укладка соединительной коробки и многие другие. Столешница имеет закрепленные шарики, с помощью которого можно открыть и переместить модуль, не боясь его повредить.
  • Машинка для очистки стекла. Ее используют при очистке стеклянных подложек. Стекло сначала очищают при помощи моющего средства, позже ополаскивают деионизированной водой два раза. Уже после подложки сушатся с помощью холодного и горячего воздуха.

Производители солнечных батарей.

Изготовление солнечных панелей из кремния – довольно перспективный и прибыльный бизнес. Спрос на солнечные панели растет каждый год. Соответственно, растут объемы продаж.

Безусловно, первое место по производству солнечных батарей занимают китайцы. Их главный козырь – очень низкая стоимость. Естественно, многие компании по всему миру не выдерживают напора и конкуренции китайских компаний. Это стало следствием закрытия, например, четырех немецких брендов за последние пару лет. Это такие гиганты, как Solon, Solarhybrid, Q-Cells и SolarMillennium. Вслед за ними закрыла свой филиал в Германии американская компания FirstSolar, а вслед за ней и компании Siemens, Bosch. И это неудивительно. Китайские солнечные панели стоят в два раза дешевле своих заграничных аналогов.

Топ компаний-производителей солнечных панелей:

  • YingliGreenEnergy. YGE за время своего существования установила солнечных батарей больше, чем на 2 ГВт.
  • FirstSolar. Несмотря на то, что компании пришлось закрыть свой завод в Германии, она не сдала свои позиции в топе. Профилем ее являются тонкопленочные панели, которых они выпустили более, чем на 4 ГВт.
  • SuntechPower Ко. Производитель выпустил на рынок около 13 миллионов батарей.

Российские популярные производители батарей:

  • Завод «Солнечный ветер».
  • Завод «Хевел».
  • Завод «Телеком-СТВ».
  • «Рязанский завод металлокерамических приборов».
  • «Термотрон-завод».

Страны СНГ также не пасут задних. Например, в Астане тоже запустили завод, выпускающий солнечные батареи из кремния. Для Казахстана это пионер в подобной отрасли. В качестве материалов там планируется использование кремния, которое находится в Казахстане. Оборудование, закупленное для производства, отвечает всем стандартам и отличается высоким качеством.

Высокие темпы строительства заводов свидетельствуют о высоком спросе на солнечные батареи. Потому в ближайшем будущем можно ожидать повсеместное использования солнечных модулей. И это, однозначно, положительно повлияет на нашу атмосферу, избавив ее от загрязнений и истощений запасов топлива.

Источник

Оцените статью