- Принцип действия солнечных батарей.
- Все дело в кремнии
- Почему человек не перешел на солнечную энергию полностью?
- Видео о том, как производят солнечные батареи.
- Принцип работы солнечной панели
- Принцип работы солнечной батареи
- Технические характеристики
- Установка солнечных батарей
- Солнечная батарея своими руками
- Современные устройства со встроенными солнечными модулями
- Как работает солнечная батарея?
- Сила тока
- Элементы для улучшения работы
- Преимущества и недостатки
- Виды солнечных панелей
- Все о солнечных батареях
- Принцип работы
- Типы фотоэлектрических преобразователей
- Характеристики кремниевых солнечных батарей
- Монокристалл
- Поликристалл
- Аморфный кремний
- Обзор модулей, не использующих кремний
- Полимерные и органические батареи
- Как сделать правильный выбор?
- Почему так важна эффективность?
- Заключение
- Видео по теме
Принцип действия солнечных батарей.
Почти 100% всей энергии, которую мы используем в повседневной жизни – это энергия солнца, так или иначе преобразованная. Уголь – это умершие растения, которые жили благодаря фотосинтезу, нефть – растения и животные, которые вымерли миллионы лет назад и росли за счет энергии солнца. Даже когда вы сжигаете дрова – вы даете выход солнечной энергии, которую в себя впитала древесина. По сути, любая тепловая электростанция преобразовывает аккумулированную в виде угля, нефти, газа и др. ископаемых солнечную энергию в электричество.
Солнечная батарея просто делает это напрямую, без участия «посредников». Электричество – наиболее удобная форма применения солнечной энергии. Весь быт человечества сейчас построен вокруг электричества, и цивилизацию без него очень сложно представить. Несмотря на то, что первые фотоэлементы появились более полувека назад, солнечная энергетика пока не нашла должного распространения. Почему? Об этом в конце статьи, а пока разберемся, как это все работает.
Все дело в кремнии
Солнечные батареи состоят из ячеек меньшего размера – фотоэлементов, которые сделаны из кремния.
Солнечная панель состоит из нескольких фотоэлементов.
Важно. Кремний – наиболее распространенный полупроводник на Земле (около 30% всей земной коры)
Кремний располагается между двумя токопроводящими слоями.
«Сэндвич» из кремния и токопроводящих слоев
Каждый атом кремния соединен с соседними четырьмя сильными связями, которые удерживают электроны на месте, поэтому так ток течь не может.
Структура атомов кремния
Для того, чтобы получить ток используют два различных слоя кремния:
- Кремний N-типа имеет избыток электронов
- Кремний Р-типа – дополнительные места для электронов (дырки)
Кремний Р и N типа
Там, где соединяются два типа кремния, электроны могут перемещаться через Р-N переход, оставляя положительный заряд на одной стороне и отрицательный на другой.
Чтобы это было легче представить, лучше думать о свете, как о потоке частиц (фотонов), которые ударяются о нашу ячейку настолько сильно, что выбивает электрон из его связи, оставляя дырку. Отрицательно заряженный электрон и место положительно заряженной дырки теперь могут свободно перемещаться, но т.к. мы имеем электрическое поле на Р-N переходе, они движутся только в одном направлении. Электрон – в сторону N-проводника, дырка стремится на Р — сторону пластины.
После «освобождения» электрон стремится к проводнику
Все электроны собираются металлическими проводниками вверху ячейки и уходят во внешнюю сеть, питая токоприемники, аккумуляторы для солнечных батарей или электрический стул для хомяка 🙂 . После проведенной работы электроны возвращаются к обратной стороне пластины и занимают места в тех самых «дырках».
Стандартная пластина, 150х150 мм номинально вырабатывает только 0,5 вольта, но если объединить их в одну большую панель, то можно получить бо́льшую мощность и вольтаж. Для зарядки мобильника нужно объединить 12 таких пластин. Для питания дома нужно затратить гораздо больше пластин и панелей.
Благодаря тому, что в фотоэлементах единственной подвижной частью являются электроны, солнечные панели не нуждаются в обслуживании и могут служить 20-25 лет не изнашиваясь и не ломаясь.
Почему человек не перешел на солнечную энергию полностью?
Можно много рассуждать о политике, бизнесе и прочей конспирологии, но в рамках этой статьи хотелось бы рассказать о других проблемах.
- Неравномерное распределение солнечной энергии по поверхности планеты. Одни области более солнечные, чем другие и это тоже непостоянною. Солнечной энергии гораздо меньше в пасмурные дни и совсем нет ночью. И чтобы полностью рассчитывать на солнечную энергию, необходимы эффективные способы получения электричества для всех областей.
- КПД. В лабораторных условиях удалось достичь результата в 46%. Но коммерческие системы не достигают даже 25% эффективности.
- Хранение. Самым слабым звеном в солнечной энергетике является отсутствие эффективного и дешевого способа сохранять полученную электроэнергию. Существующие аккумуляторные батареи тяжелы и значительно снижают эффективность и без того слабые показатели солнечной системы. В целом, хранить 10 тонн угля проще и удобнее, чем 46 мегаватт, выработанных этим же углем или солнцем.
- Инфраструктура. Для того, чтобы питать мегаполисы – площадей крыш этих городов будет недостаточно, чтобы удовлетворить все запросы, поэтому для внедрения солнечной энергетики нужно транспортировать энергию, а для этого необходимо строить новые энергетические объекты
Видео о том, как производят солнечные батареи.
В ролике подробно описывается процесс изготовления поликристаллических солнечных батарей, принцип их работы в системе солнечных электростанций, принцип работы контроллера заряда и инвертора.
Источник
Принцип работы солнечной панели
Принцип работы солнечной батареи
Устройство предназначено для непосредственного преобразования лучей солнца в электричество.
Этот действие называется фотоэлектрическим эффектом.
Полупроводники (кремневые пластины), которые используются для изготовления элементов, обладают положительными и отрицательными заряженными электронами и состоят их двух слоев n-слой (-) и р-слой (+).
Излишние электроны под воздействием солнечного света выбиваются из слоев и занимают пустые места в другом слое.
Это заставляет свободные электроны постоянно двигаться, переходя из одной пластины в другую вырабатывая электричество, которое накапливается в аккумуляторе.
Технические характеристики
Устройство солнечной батареи состоит из нескольких компонентов:
- Непосредственно фотоэлементы / солнечная панель;
- Инвертор, преобразовывающий постоянный ток в переменный;
- Контроллер уровня заряда аккумулятора.
(Tesla Powerwall — аккумулятор для солнечных панелей на 7 КВт — и домашняя зарядка для электромобилей)
Установка солнечных батарей
Если конструкции будут использоваться для электрообеспечения жилых пространств, то место установки следует выбирать тщательно. Если панели будут загорожены высотными зданиями или деревьями, то трудно будет получить необходимую энергию. Их необходимо разместить там, где поток солнечных лучей максимален, то есть на южную сторону. Конструкцию лучше установить под наклоном, угол которого равен географической широте месторасположения системы.
Солнечные панели должны размещаться таким образом, чтобы хозяин имел возможность периодически очищать поверхность от пыли и грязи или снега, поскольку это приводит к более низкой способности выработки энергии.
Солнечная батарея своими руками
Те, кто хочет сэкономить, задумываются, как сделать солнечную батарею в домашних условиях самостоятельно, чтобы она обладала необходимыми эксплуатационными параметрами и полностью обеспечивала энергетические потребности. Это особенно актуально для мест отдаленных от главных артерий цивилизации.
Солнечные батареи своими руками в домашних условиях изготавливаются из соответствующих элементов, которые можно купить в открытом доступе в специализированных компаниях или через интернет магазины. Если кремниевые пластины должны приобретаться у производителей, то остальные элементы, такие как лента, рамка, пленка, стекло, припой и прочее можно вполне обнаружить и дома в хозяйстве.
Производство солнечных батарей базируется на применении новейших технологий, которые постоянно развиваются, предлагая более усовершенствованные модели. В зависимости от размеров устройств, они могут использовать для различных целей в местах, где нет снабжения электроэнергией. Они встречаются на калькуляторах, часах, различных мобильных устройствах.
Так, например, рюкзак с солнечной батареей будет незаменимым помощником тех, кто любит путешествовать с комфортом. Он накопит достаточно энергии, чтобы зарядить фонарик для освещения туристической палатки или чтобы во время похода заряжать необходимые гаджеты.
Современные устройства со встроенными солнечными модулями
- Power bank с солнечной батареей – внешний накопитель с фотоэлементами для преобразования солнечных лучей в заряд аккумулятора. Он обладает несколькими портами и предназначен для зарядки смартфонов или планшетов. Это незаменимое устройство для тех кто, много времени тратят в дороге и пользуются гаджетами. Устройство может дополняться различными функциями, например, фонариком.
- Робот конструктор – наборы с различными элементами, из которых можно собрать несколько конструкций, которые двигаются автономно. Это лучшая игрушка для любознательных детей. Робот конструктор на солнечной батарее купить интересно будет не только малышам, но и вполне взрослым дяденькам, поскольку захватывающим является не только движение робота, но и сам процесс сборки.
- Уличные садовые светильники на солнечных батареях – идеальное решение для сада, огорода или приусадебного участка. Благодаря накопленному заряду они будут светиться всю ночь. Для этого не нужно прокладывать специальную проводку. Их можно брать с собой на рыбалку или семейный поход. Чрезвычайная мобильность, компактность и удобство делают фонари самыми востребованными изделиями на солнечных батареях.
Как работает солнечная батарея?
Основой фотоэлемента является кристалл кремния. Соединения кремния очень распространены в природе. Самый известный – это оксид кремния или песок. Кристалл кремния можно упрощенно назвать большой песчинкой.
На полученные пластины кремния нанесён с одной стороны слой бора, а с другой ─ фосфора.
В местах контакта кремниевой пластины с бором имеется избыток электронов. На другой стороне по границе кремниевой пластины с фосфором недостаёт электронов. Там образуются «дырки», как их принято называть. Такую стыковку границ с избыточным количеством электроном и их недостатком называют p-n переходом.
При попадании солнечного света на фотоэлементы батареи их поверхность бомбардируется фотонами. Они выбивают избыточные электроны на границе с фосфором, и они начинают движение к «дыркам» на границе с бором. Таким образом, возникает электрический ток, являющийся упорядоченным движением электронов. К фотоэлементу подводятся металлические дорожки, через которые и собирается ток. В этом и выражается принцип работы кремниевого фотоэлемента.
Мощность одного фотоэлектрического элемента маленькая, а напряжение составляет около 0,5 вольта. Поэтому их последовательно объединяют в батареи по 36 штук, чтобы получить на выходе 18 вольт. Это хватит для того, чтобы зарядить аккумулятор 12 вольт.
Стоит отметить, что полностью отказаться от электричества из централизованных сетей не получиться. Но после установки солнечной батареи можно будет сэкономить на коммунальных расходах.
Что касается установки солнечных батарей, то здесь следует отметить следующие моменты:
- Устанавливать панели нужно на южной стороне крыши, фасада или на участке стороной на юг;
- Угол наклона соответствует значению широты вашего региона;
- Рядом не должно быть объектов, отбрасывающих тень на солнечные батареи;
- Поверхность панелей нужно регулярно очищать от грязи и пыли;
- Желательно использовать системы с отслеживанием положения солнца.
Сила тока
Факторы, влияющие на силу тока в солнечном элементе:
- количество света, попавшего на поверхность элемента;
- интенсивность излучения источника света;
- площадь принимающего фотоны элемента;
- угол падения света на принимающий элемент;
- время эксплуатации элемента;
- КПД системы (в настоящее время у самых передовых аналогов он составляет не более 24%. О КПД солнечных батарей Вы можете прочитать в этой статье.);
- температура окружающего воздуха (чем выше она, тем больше у элемента сопротивление).
Элементы для улучшения работы
Солнечный трекер — это устройство, предназначенное для слежения за движением Солнца и поворота солнечной панели таким образом, чтобы на её поверхность попадало как можно больше солнечных лучей.
Преимущества и недостатки
Плюсы:
- экологичность (не загрязняет окружающую среду);
- долговечность (при бережном использовании фотоэлементы прослужат несколько десятков лет);
- достаточно простой принцип работы.
Минусы:
- сложность сборки самой системы и наладки её работы;
- низкий КПД (для потребления 200 Кв в месяц нужно 12-15 кв. метров батарей);
- высокая стоимость и низкая окупаемость системы.
Виды солнечных панелей
Солнечная батарея в общем виде – конструкция, содержащая темные детали, покрытые стеклом, с полосами из металла, проводящими электрический ток.
Источник
Все о солнечных батареях
Планета Земля и вся зародившаяся на ней жизнь прошла не малый путь эволюции. Солнце обеспечивало энергией все живое и неживое, на протяжении всего периода существования планеты. В 21 столетии мы научились неплохо взаимодействовать с солнечным светом и использовать его в качестве альтернативной энергетики. Для этого инженерами были разработаны и внедрены в эксплуатацию солнечные батареи.
Принцип работы
Конструкция множества солнечных батарей сделана по принципу, что они в физическом смысле являются фотоэлектрическими преобразователями. Электрогенерирующий эффект проявляется в месте «p–n» перехода.
Чтобы сконцентрировать в себе солнечную энергию, полупроводники выполнены в форме панелей. По этой причине эти конструкции получили одноимённое название в независимости от их формы (гибкие или статичные) — солнечные панели.
По какому принципу работают солнечные панели и системы на их основе? Панель включает в себя 2 кремневые пластины с различимыми друг от друга свойствами. Процесс вырабатывания электроэнергии происходит так:
- Воздействие солнечных лучей на первую приводит к недостаче электронов.
- При воздействии на вторую пластину, та получает избыток электронов.
- К пластинам подведены полосы из меди, проводящие ток.
- Полосы подключаются к преобразователям напряжения с встроенными АКБ.
Основа — это кремниевые пластины. Но чтобы данную конструкцию использовать в качестве источника бесперебойного питания (а не только во время солнцестояния), к ней подключаются не дешевые аккумуляторы (с их помощью подключенные к сети объекты расходуют энергию ночью).
В промышленности конструкция для поглощения энергии Солнца сделана из многочисленных ламинированных фотоэлектрических ячеек, связанных друг с другом и поставленных на гибкой или жесткой подставке.
Коэффициент полезного действия конструкции вычисляется исходя из применения разных факторов. Основными являются — чистота задействованного кремния и размещение кристаллов.
Процесс очищения кремния довольно сложен, да и расположить кристаллы в единой направленности не легко. Сложность процессов, отвечающих за повышение КПД конвертируются в высокую цену за подобное оборудование.
Солнечные панели — перспективное направление в энергетике, поэтому в исследования новых проектов в этой сфере инвестируется многомиллиардные вложения. Каждый квартал коэффициент фотоэлектрического преобразования повышается, благодаря манипуляциям с проводниками и элементами конструкции. При этом, за основу может браться не только кремний.
Типы фотоэлектрических преобразователей
В промышленности существует классификация солнечных батарей по типу устройства и применяемого фотоэлектрического слоя.
По устройству делятся на:
- панели из гибких элементов, они же гибкие;
- панели из жестких элементов.
При развертывании панелей чаще всего используются гибкие тонкоплёночные. Они укладываются на поверхность, игнорируя некоторые неровные элементы, что делает данный тип устройства — более универсальным.
По типу фотоэлектрического слоя для последующего преобразования энергии панели делятся на:
- Кремниевые (монокристалл, поликристалл, аморфные).
- Теллурий–кадмиевые.
- Полимерные.
- Органические.
- Арсенида–галлиевые.
- Селенид индия– меди– галлиевые.
Хотя разновидностей множество, львиную долю в потребительском обороте имеют кремниевые и теллурий–кадмиевые солнечные панели. Эти два типа выбирают из–за соотношения кпд/цена.
Характеристики кремниевых солнечных батарей
Кварцевый порошок — это сырьевой материал для кремния. Данного материала на Урале и Сибири очень много, поэтому именно кремниевые солнечные панели есть и будут в большем обиходе, чем остальные подтипы.
Монокристалл
Монокристаллические пластины (mono–Si) содержат в себе синевато–темный цвет, равномерно размещенный на всей пластине. Для таких пластин применяется максимально очищенный кремний. Чем он чище, тем солнечные батареи имеют КПД выше и самую наибольшую стоимость на рынке таких устройств.
- Наивысший КПД — 17–25%.
- Компактность — задействование сравнительно с поликристаллом меньшей площади для развертывания оснащения в условиях тождества мощности.
- Износостойкость — бесперебойная работа выработки электроэнергии без замены основных комплектующих обеспечивается за четверть века.
- Чувствительность к пыли и грязи — осевшая пыль не дает батареям работать со светом от светила и соответственно уменьшает КПД.
- Высокая цена равна увеличенному сроку окупаемости.
Так как mono–Si нуждаются в ясной погоде и лучах Солнца, панели устанавливаются на открытых местах и поднятые на высоту. Насчет местности, то предпочтение отдается местности, в которой ясная погода обыденность, а количество солнечных дней приближено к максимальному.
Поликристалл
Поликристаллические пластины (multi–Si) наделены неравномерным синим окрасом из–за разнонаправленности кристаллов. Кремний не настолько чист, как в используемых mono–Si, поэтому КПД несколько ниже, вместе со стоимостью таких солнечных батарей.
Положительные факты поликристалла:
- Коэффициент полезного действия 12–18%.
- При неблагоприятной погоде КПД лучше, чем у Mono–Si.
- Цена данного агрегата меньше, а сроки окупаемости намного ниже.
- Ориентация на солнце не принципиальна, поэтому можно размещать их на крышах различных строений.
- Длительность эксплуатации — эффективность поглощения энергии и аккумулирования электричества падает до 20% спустя 20 лет непрерывной эксплуатации.
- КПД уменьшен до 12–18%.
- Требовательность к месту. Для развертывания нормальной станции выработки электроэнергии нужно больше места, чем при задействовании батареи из монокристалла.
Аморфный кремний
Технология производства панелей существенно отличается от предыдущих двух. В приготовлении задействованы горячие пары, опускающиеся на подложку без образования кристаллов. При этом используется меньше производственного материала и это учитывается при формировании цены.
- Коэффициент полезного действия — 8–9% во втором поколении и до 12% в третьем.
- Высокий коэффициент полезного действия при не совсем солнечной погоде.
- Возможность использования на гибких модулях.
- Эффективность батарей не падает вниз при повышении температуры, что позволяет монтировать их на всякие поверхности с нестандартной формой.
Основным недостатком можно считать меньший КПД (если сравнивать с иными аналогами), в связи с чем требуется большая площадь для получения сопоставимой отдачи от оборудования.
Обзор модулей, не использующих кремний
Солнечные панели, изготавливаемые из более дорогих аналогов, достигают коэффициента в 30%, они могут быть в несколько раз дороже аналогичных систем на основе кремния. Некоторые из них всё же имеют более низкий КПД, при этом обладая возможностью работать в агрессивной среде. Для изготовления таких панелей применяется чаще всего теллурид кадмия. Применяются и другие элементы, но реже.
Перечислим основные преимущества:
- Высокий КПД, от 25 до 35%, с возможностью достигнуть, в относительно идеальных условиях даже 40%.
- Фотоэлементы стабильны даже при температурах до 150 °C.
- Концентрация света от светила на маленькой панели позволяет обеспечить водяной теплообменник энергией, в результате чего образовывается пар, который вращает турбину и генерирует электричество.
Как и говорили ранее — минусом является высокая цена, но в некоторых случаях они являются лучшим решением. Например, в экваториальных странах, где поверхность модулей может нагреться до 80 °C.
Полимерные и органические батареи
Модули, созданные на основе полимерных и органических материалов, получили своё распространение в последние 10 лет, они создаются в виде плёночных конструкций, толщина которых редко превышает 1 мм. Их КПД близок к 15%, а стоимость в несколько раз ниже кристаллических аналогов.
- Низкая стоимость производства.
- Гибкий (рулонный) формат.
Недостатком панелей из этих материалов является снижение эффективности на длительной дистанции. Но этот вопрос ещё исследуется и производство постоянно модернизируется, чтобы исключить минусы, которые могут проявиться в существующем поколении такого вида батарей через 5–10 лет.
Как сделать правильный выбор?
Для владельцев домов, расположенных на Европейском континенте выбор довольно прост — это поликристалл либо монокристалл из кремния. При этом, при ограниченных площадях стоит сделать выбор в пользу монокристаллических панелей, а при отсутствии таких ограничений — в пользу поликристаллических батарей. При выборе производителя, технических параметров оборудования и дополнительных систем стоит обратиться к компаниям, которые занимаются как продажей, так и установкой комплектов. Учитывайте, что вне зависимости от производителя — качество систем у «топовых» производителей вряд ли будет отличаться, поэтому не дайте себя обмануть, изучая ценовую политику.
Если решили заказать установку «солнечной фермы» под ключ, учтите, что сами панели в пакете таких услуг займут всего 1/3 общей стоимости, а окупаемость вплотную приблизится к отметке «10 лет»:
- Бюджетным, но эффективным выбором станут панели от компании Amerisolar, поликристаллическая модель носит название AS–6P30 280W, имеет размер 1640х992 мм и выдаёт, соответственно — 280 Вт мощности. КПД модуля составляет 17.4%. Из минусов — гарантия всего 2 года. Но стоимость ∼7 тыс. рублей.
- Аналогичным по мощности будет модуль RS 280 POLY от китайской Runda, стоимость ещё ниже — около 6 тыс. рублей.
- Если место ограничено, стоит обратить внимание на продукт компании LEAPTON SOLAR — LP72–375M PERC, КПД составляет 19.1%, и при размерах 1960х992 мм получаем на выходе 375 Вт энергии. Стоимость такой батареи будет в районе 10 тыс. рублей.
- Ещё одним эффективным вариантом с меньшими габаритами, 1686х1016 мм будет новинка от LG — NeOn 340 W. «Не он» может похвастаться КПД в 19.8%, но не может похвастаться стоимостью, она будет более чем в половину выше предыдущего образца — примерно 16 тысяч рублей.
- Для тех, кто хочет обратить своё внимание на премиальный сегмент, тайваньская компания BenQ выпустила на рынок монокристальный модуль SunForte PM096B00 333W, выдающий на выходе 333 Вт мощности, имеющий номинальный КПД в 20.4% при размерах 1559х1046 мм. Этот модуль получил впечатляющую стоимость в почти 35 тысяч рублей.
Почему так важна эффективность?
Большое значение эффективность приобретает при расчёте площади, которую вы можете использовать под систему солнечных батарей. При сопоставимых размерах описанных модулей от Amerisolar AS–6P30 280W (1.63 квадратных метра) и NeOn 340 W от LG (1.71 квадратных метра), разница в мощности на один квадратный метр на выходе будет составлять 15.6%. С одной стороны, это может показаться не очень эффективным, учитывая разницу в цене более чем в два раза, но в случае с ограниченным пространством или более агрессивной внешней средой, возможно, сдвинет ваш выбор в пользу этого известного производителя.
Увеличенный коэффициент полезного действия подчеркивает не только эффективность технологии изготовления, но и качественные материалы, используемые при изготовлении. Это сможет сказаться на сроках работы устройств, на устойчивость панелей к так называемой деградации. Не стоит забывать также и про гарантийные обязательства производителя. Имея представительства и гарантийные сервисы почти во всех уголках мира — LG сможет похвастаться более лояльным подходом к клиентам и выполнением своих обязательств.
Заключение
Если рассматриваете установку солнечной станции в качестве инвестиций, выбор моделей с меньшим КПД будет более оправданным. Если целью является использование системы в домашнем хозяйстве, по принципу «установил и забыл», мы порекомендуем обратить внимание на панели от более именитых производителей, это позволит получить большую отдачу от станции в долгосрочной (более 5 лет) перспективе.
Видео по теме
Источник