- Принцип работы солнечной батареи, что такое солнечная батарея
- История создания солнечной батареи
- Виды солнечных батарей
- Устройство солнечной батареи
- Принцип работы солнечной батареи
- Преимущества и недостатки использования солнечной батареи
- Применение солнечной батареи
- Как работает солнечная батарея? Виды и устройство.
- Виды солнечных панелей
- Устройство солнечной батареи
- Виды кристаллов фотоэлементов
- Принцип работы солнечной батареи
- Преимущества и недостатки
Принцип работы солнечной батареи, что такое солнечная батарея
Солнечная батарея — это источник постоянного электрического тока от преобразованной энергии солнца при помощи фотоэлементов.
Фотоэлементы — это преобразователи энергии фотонов в ток.
Фотоны — это элементарная частица, не имеющая массы покоя.
Солнечная батарея для обеспечения бытовых потребностей в электроэнергии
История создания солнечной батареи
В 1839 году Антуаном – Сезаром была представлена батарея, которая преобразовывала энергию Солнца в ток.
В 1877 году Адамс и Дей открыли выработку электричества селеном при действии на него солнечных лучей.
В 1905 году Альберт Эйнштейн описал фотоэффект.
В 1954 году был создан элемент солнечной батареи, выполненной из кремния Гордоном Пирсоном, Кэпом Фуллером и Дэррилом Чапиным.
Виды солнечных батарей
В настоящее время солнечные батареи представлены несколькими вариантами в зависимости от типа их устройства, и от материала, из которого изготовлен фотоэлектрический слой.
I. Классификация по типу их устройства:
II. В зависимости от материала, из которого изготовлен фотоэлектрический слой выделяют:
1. Солнечные батареи, фотоэлемент которых выполнен из кремния. Они в свою очередь бывают монокристаллическими, поликристаллическими и аморфными. Монокристаллические панели достаточно дорогой вариант, но они отличаются высокой мощностью.
Поликристаллические дешевле, чем монокристаллические панели. Такие панели медленней теряют свою эффективность с увеличением сроков службы, а так же при нагревании.
Аморфные представлены в основном тонкопленочными панелями. Такое устройство солнечной батареи позволяет генерировать солнечный свет, даже в плохих погодных условиях;
2. Солнечные батареи, фотоэлемент которых выполнен из теллурида кадмия;
3. Солнечные батареи, фотоэлемент которых выполнен из селена;
4. Солнечные батареи, фотоэлемент которых выполнен из полимерных материалов;
5. Из органических соединений;
6. Из арсенида галлия;
7. Из нескольких материалов одновременно.
Основные типы, которые получили распространение, это многопереходные кремниевые фотоэлементы.
Фотоэлементы, выполненные из кремния, отличаются высокой чувствительностью к нагреванию, компактностью, надежностью и высоким уровнем КПД (коэффициента полезного действия).
Другие материалы не получили широкого распространения в связи с большой стоимостью.
Устройство солнечной батареи
Для того, чтобы солнечная батарея была способна преобразовывать свет солнца в ток, необходимы следующие элементы:
- Фотоэлектрический слой, который играет роль полупроводника. Представлен двумя слоями разных по проводимости материалов. Здесь электроны способны переходить из области p(+) в область n (-). Это называется p-n переход;
- Между двумя слоями полупроводников помещен элемент, который является по своей сути преградой для перехода электронов;
- Источник питания. Он необходим для подключения к элементу, препятствующему переходу электронов. Он преобразовывает движение заряженных электронов, т.е. создает электрический ток. Аккумуляторная батарея. Аккумулирует и хранит энергию;
- Контролёр заряда. Основной его функцией является подключение и отключение солнечной батареи исходя от уровня заряда. Более сложные устройства способны контролировать максимальный уровень мощности;
- Преобразователь прямого тока в переменный (инвертор);
- Устройство, стабилизирующее напряжение. Обеспечивает защиту системы солнечной батареи от скачков напряжения.
Принцип работы солнечной батареи
Принцип работы солнечной батареи основан на фотоэлектрическом эффекте.
Солнечный свет (лучи), попадая на фотоэлектрический слой, полупроводниковых пластин приводит к высвобождению излишних электронов из обоих слоёв (n и p). На место оставшееся после освобождения электронов в одном слое встают освобожденные электроны другого слоя. Таким образом, происходит постоянное передвижение электронов из одного слоя в другой через p-n переход.
В результате этого на внешней цепи начинает появляться напряжение. Слой p становится положительно заряженным, а слой n – отрицательно.
Аккумулятор в ходе этих действий начинает набирать заряд.
Контролёр заряда подключает солнечную батарею, если заряд аккумулятора низкий. И выключает её, в случае, когда аккумулятор заряжен. Также контролер не даёт течь обратному току в то время, когда отсутствует солнце.
Трансформатор прямого тока в переменный необходим для преобразования постоянного тока в переменный с напряжением 220 В. Он бывает двух видов:
- Сетевой тип инверторов. Обеспечивает работу только в дневное время суток и тех приборов, которые присоединены к нему самому;
- Автономный тип. Применяется в устройстве элементов солнечной батареи, с наличием аккумуляторной батареи. Они предназначены для работы систем бесперебойного питания.
Это Интересно! Солнечной энергии, выделяемой за 1 секунду, достаточно для удовлетворения потребностей всего человечества на полмиллиона лет!
Преимущества и недостатки использования солнечной батареи
К преимуществам использования солнечной батареи относят:
- Экономическую выгоду. Электроэнергия, поставляемая от энергии солнца, бесплатная;
- Экологическая безопасность. Работа солнечной батареи не связана с выбросом вредных веществ в атмосферу;
- Установка системы солнечной батареи является быстро окупаемой;
- Простота эксплуатации и установки.
К недостаткам относят:
- Дороговизна установки;
- Маленькие фотоэлементы не обеспечивают всех потребностей в электроэнергии одной семьи;
- Эффективность их работы зависит от многих факторов, таких как:
- Погодных условий;
- Температуры на улице и степени нагрева солнечной батареи;
- Грамотного выбора всех комплектующих для обеспечения требуемых параметров;
- Мощности потока света;
- Ориентации солнечной батареи к положению Солнца;
- Чистоты панелей.
Применение солнечной батареи
Постепенно происходит внедрение солнечной батареи во многие отрасли жизнедеятельности человека.
Например, солнечные батареи используются:
- В автомобилестроении;
- В промышленных объектах;
- В сельском хозяйстве;
- На военно-космических объектах;
- В бытовых нуждах;
Это Интересно! Одним из первых вариантов появления прибора с солнечной батареей был калькулятор, способный работать только при попадании на его фотоэлемент солнечных лучей.
Сейчас солнечными батареями оснащают некоторые модели походных рюкзаков. Они служат источником света, электричества в условиях отсутствия цивилизации.
Использование солнечной батареи как источника электроэнергии интересует все большее количество людей, причем не только в бытовых нуждах, но и для обеспечения электроэнергией предприятий. Для того чтобы эта система была эффективной необходимо знать ее устройство и принцип работы. Это поможет подобрать компоненты в зависимости от желаемой мощности установки.
Источник
Как работает солнечная батарея? Виды и устройство.
Поверхность земли постоянно освещается солнечным светом, это обеспечивает жизнь всем живым существам. Еще совсем недавно применение солнечной батареи казалось невозможным, но на сегодняшний день каждый желающий имеет возможность приобрести данное устройство. Особенно актуален вопрос среди дачников, желающих при наименьших денежных затратах пользоваться электричеством. Солнечные батареи активно используются в промышленных масштабах, ведь солнечные электростанции современного типа способны получать количество электроэнергии, необходимое для малых городов. Немаловажным является отсутствие вреда для экологии при использовании солнечных батарей. Солнечные батареи активно используются в странах Европы, Израиле.
В статье описаны виды солнечных батарей, их устройство, принцип работы солнечной электростанции. Так как же работает солнечная батарея? — Давайте узнаем.
Виды солнечных панелей
Солнечная батарея в общем виде – конструкция, содержащая темные детали с полосами из металла, проводящими электрический ток. Детали покрыты стеклом. Существующее множество солнечных батарей показано на рисунке.
— По мощности До 10 Вт
— От 200 Вт
По виду фотоэлементов
— Фотохимические
— Органического вида
— Основа — полупроводники из кремния
— Основа — арсенид галлия
— Гибкие (могут удобно сворачиваться, имеют популярность среди туристов).
Фото солнечной батареи, способной скручиваться в рулон
Портативная солнечная батарея
Устройство солнечной батареи
Составные элементы солнечной батареи:
1. Два слоя кремния (между собой образуют пластину, внутренний слой – кремний на монокристаллической основе, обладает проводимостью р-типа, наружный слой – кремний, содержащий различные примеси, данный слой имеет проводимость n-типа).
2. Каркас с фотоэлементами (детали расположены таким образом, чтобы в случае поломки их можно было починить).
3. Аккумуляторы (один является основным, второй – запасным).
4. Пластик закаленного вида, покрывающий всю конструкцию от повреждений.
Принцип работы солнечной батареи заключается в следующем: электроны выходят из р-слоя, затем попадают в n-слой, предварительно пройдя определенную нагрузку. N-слой выступает источником избыточных электронов.
Аккумуляторы солнечных батарей работают следующим образом: основной собирает электрическую энергия для последующей транспортировки в сеть, другой аккумулятор работает в запасном режиме (накапливает энергию сверх нормы, а затем, при снижении напряжения, энергия поступает в сеть).
Детали солнечной батареи важно беречь от метеорной пыли и радиации, данные элементы способствуют появлению эрозии на кремниевых слоях.
Солнечная энергия как альтернативный источник энергии зарекомендовала себя с положительной стороны и применяется во многих сферах жизни человека.
Виды кристаллов фотоэлементов
Вид и Характерные особенности
Поликристаллы → Отличительная особенность – синий цвет, КПД — 14%.
Монокристаллы → Эффективность — 16%.
Основа – аморфный кремний → Производительность – 6-8%.
Основа — теллурид кадмия → Эффективность — 11%.
Основа — полупроводнике CIGS → Значение эффективности — 25%.
От вида кристаллов фотоэлемента зависит, как работает солнечная панель. Панели на основе монокристаллов обладают высокой эффективностью, цена конструкций высокая. К низкой ценовой категории относятся солнечные батареи на основе аморфного кремния, однако максимальная производительность таких конструкций всего 8 %. Работа солнечной панели на базе аморфного кремния не является продолжительной.
Принцип работы солнечной батареи
Принцип работы солнечной батареи заключается в следующем:
1. Происходит падение солнечных лучей на специальный фотоэлемент.
2. В фотоэлементе создаются пары электронно-дырочного типа.
3. Электроны сверх нормы переносятся из одного слоя полупроводника в другой, в результате данного процесса во внешней среде образуется напряжение.
Работу солнечной батареи можно сравнить с колесом, по которому передвигаются электроны. Аккумуляторы при таком движении постепенно накапливают заряд.
В жару менее продуктивно работает фотогальваническая составляющая солнечной батареи. Максимальную отдачу конструкции демонстрируют при ясной зимней погоде. Следует подчеркнуть, что падение снега не влияет на работу батареи, она все равно продолжает нормально функционировать.
Солнечную энергию можно преобразовывать не только в электрическую, но и в тепловую. В данном процессе происходит не преобразование, а накапливание энергии. В этом и заключается принцип работы солнечного коллектора: устройство собирает тепло и передает его в теплоноситель. Данная конструкция применяется при отоплении домов.
Солнечная панель включает в себя ряд фотоэлементов, создающих разность потенциалов под воздействием освещения. Если целью является увеличение напряжения, то нужно соединять фотоэлементы последовательным методом, в случае необходимости увеличения силы тока требуется соединить элементы параллельно.
Принцип работы фотоэлемента позволяет наглядно представить, как устроена солнечная панель.
Алгоритм преобразования энергии солнца в электрическую энергию:
• воздействие светом на полупроводники (фотоэлементы – два слоя полупроводника, имеющих различную проводимость, n-проводимость, p-проводимость);
• создание разности потенциалов;
• замыкание цепи;
• получение электрической энергии.
Рассмотрев, из чего состоит солнечная батарея, можно сделать вывод о несложной конструкции с относительно невысокими денежными затратами.
Преимущества и недостатки
К достоинствам солнечных батарей можно отнести:
• доступность для промышленных целей и частных лиц;
• постоянное существование источника энергии;
• легкость в обслуживании;
• безопасность в использовании;
• достаточно длительный срок эксплуатации конструкций.
Вырабатываемая солнцем энергия является альтернативной перспективой будущего по замене существующих электрических источников.
Недостатки солнечной энергии:
• малая эффективность недорогих конструкций;
• зависимость от погодных условий;
• постоянная уборка отражающей поверхности;
• дороговизна мощных установок.
Солнечная энергия является самой перспективной среди других видов энергии за счет следующих факторов:
• отсутствие вреда для экологии;
• постоянно возобновляемый источник.
Для снижения цены на солнечные батареи важно увеличить мощность потока солнечной энергии, попадающей на фотоэлемент.
Для достижения данной цели ученые разработали специальные конструкции:
• трекер (помощник в поиске энергии);
• концентратор необходимой энергии (с большой площади отправляет энергию на небольшой участок, приспособление имеет малый вес).
Применение вышеперечисленных деталей позволит солнечным панелям стать главным источником энергии при наименьших денежных затратах и отсутствием вреда для экологии.
На видео: Как работает солнечная батарея?
Источник