Пример расчета мощности солнечных батарей

Расчёт солнечных батарей

Приветствую вас на сайте е-ветерок.ру, сегодня я хочу вам рассказывать о том сколько нужно солнечных батарей для дома или дачи, частного дома и пр. В этой статье не будет формул и сложных вычислений, я попробую донести всё простыми словами, понятными для любого человека. Статья обещает быть не маленькой, но я думаю вы не зря потратите своё время, оставляйте комментарии под статьёй.

Самое главное чтобы определится с количеством солнечных батарей надо понимать на что они способны, сколько энергии может дать одна солнечная панель, чтобы определить нужное количество. А также нужно понимать что кроме самих панелей понадобятся аккумуляторы, контроллер заряда, и преобразователь напряжения (инвертор).

Расчёт мощности солнечных батарей

Чтобы рассчитать необходимую мощность солнечных батарей нужно знать сколько энергии вы потребляете. Например если ваше потребление энергии составляет 100кВт*ч в месяц (показания можно посмотреть по счётчику электроэнергии), то соответственно вам нужно чтобы солнечные панели вырабатывали такое количество энергии.

Сами солнечные батареи вырабатывают солнечную энергию только в светлое время суток. И выдают свою паспортную мощность только при наличие чистого неба и падении солнечных лучей под прямым углом. При падении солнца под углами мощность и выработка электроэнергии заметно падает, и чем острее угол падения солнечных лучей тем падение мощности больше. В пасмурную погоду мощность солнечных батарей падает в 15-20 раз, даже при лёгких облачках и дымке мощность солнечных батарей падает в 2-3 раза, и это всё надо учитывать.

Читайте также:  Формула для кпд солнечной батареи

При расчёте лучше брать рабочее время, при котором солнечные батареи работают почти на всю мощность, равным 7 часов, это с 9 утра до 4 часов вечера. Панели конечно летом будут работать от рассвета до заката, но утром и вечером выработка будет совсем небольшая, по объёму всего 20-30% от общей дневной выработки, а 70% энергии будет вырабатываться в интервале с 9 до 16 часов.

Таким образом массив панелей мощностью 1кВт (1000ватт) за летний солнечный день выдаст за период с 9-ти до 16-ти часов 7 кВт*ч электроэнергии, и 210кВт*ч в месяц. Плюс ещё 3кВт (30%) за утро и вечер, но пускай это будет запасом так-как возможна переменная облачность. И панели у нас установлены стационарно, и угол падения солнечных лучей изменяется, от этого естественно панели не будут выдавать свою мощность на 100%. Я думаю понятно что если массив панелей будет на 2кВт, то выработка энергии будет 420кВт*ч в месяц. А если будет одна панелька на 100 ватт, то в день она будет давать всего 700 ватт*ч энергии, а в месяц 21кВт.

Неплохо иметь 210кВт*ч в месяц с массива мощностью всего 1кВт, но здесь не всё так просто

Во-первых не бывает такого что все 30 дней в месяце солнечные, поэтому надо посмотреть архив погоды по региону и узнать сколько примерно пасмурных дней по месяцам. В итоге наверно 5-6 дней точно будут пасмурные, когда солнечные панели и половины электроэнергии не будут вырабатывать. Значит можно смело вычеркнуть 4 дня, и получится уже не 210кВт*ч, а 186кВт*ч

Так-же нужно понимать что весной и осенью световой день короче и облачных дней значительно больше, поэтому если вы хотите пользоваться солнечной энергией с марта по октябрь, то нужно увеличить массив солнечных батарей на 30-50% в зависимости от конкретного региона.

Но это ещё не всё, также есть серьёзные потери в аккумуляторах, и в преобразователей (инверторе), которые тоже надо учитывать, об этом далее.

Про зиму я пока говорить не буду так-как это время совсем плачевное по выработке электроэнергии, и тут когда неделями нет солнца, уже никакой массив солнечных батарей не поможет, и нужно будет или питаться от сети в такие периоды, или ставить бензогенератор. Хорошо помогает также установка ветрогенератора, зимой он становится основным источником выработки электроэнергии, но если конечно в вашем регионе ветренные зимы, и ветрогенератор достаточной мощности.

Расчёт ёмкости аккумуляторной батареи для солнечных панелей

Примерно так выглядит солнечная электростанция внутри дома

Ещё один пример установленных аккумуляторов и универсального контроллера для солнечных батарей

Самый минимальный запас ёмкости аккумуляторов, который просто необходим должен быть такой чтобы пережить тёмное время суток. Например если у вас с вечера и до утра потребляется 3кВт*ч энергии, то в аккумуляторах должен быть такой запас энергии.

Если аккумулятор 12 вольт 200 Ач, то энергии в нём поместиться 12*200=2400 ватт (2,4кВт). Но аккумуляторы нельзя разряжать на 100%. Специализированные АКБ можно разряжать максимум до 70%, если больше то они быстро деградируют. Если вы устанавливаете обычные автомобильные АКБ, то их можно разряжать максимум на 50%. По-этому, нужно ставить аккумуляторов в два раза больше чем требуется, иначе их придётся менять каждый год или даже раньше.

Оптимальный запас еъёмкости АКБ это суточный запас энергии в аккумуляторах. Например если у вас суточное потребление 10кВт*ч, то рабочая ёмкость АКБ должна быть именно такой. Тогда вы без проблем сможете переживать 1-2 пасмурных дня, без перебоев. При этом в обычные дни в течение суток аккумуляторы будут разряжаться всего на 20-30%, и это продлит их недолгую жизнь.

Ещё одна немаловажная делать это КПД свинцово-кислотных аккумуляторов, который равен примерно 80%. То-есть аккумулятор при полном заряде берёт на 20% больше энергии чем потом сможет отдать. КПД зависит от тока заряда и разряда, и чем больше токи заряда и разряда тем ниже КПД. Например если у вас аккумулятор на 200Ач, и вы через инвертор подключаете электрический чайник на 2кВт, то напряжение на АКБ резко упадёт, так-как ток разряда АКБ будет около 250Ампер, и КПД отдачи энергии упадёт до 40-50%. Также если заряжать АКБ большим током, то КПД будет резко снижаться.

Также инвертор (преобразователь энергии 12/24/48 в 220в) имеет КПД 70-80%.

Учитывая потери полученной от солнечных батарей энергии в аккумуляторах, и на преобразовании постоянного напряжения в переменное 220в, общие потери составят порядка 40%. Это значит что запас ёмкости аккумуляторов нужно увеличивать на 40%, и так-же увеличивать массив солнечных батарей на 40%, чтобы компенсировать эти потери.

Но и это ещё не все потери. Существует два типа контроллеров заряда аккумуляторов от солнечных батарей, и без них не обойтись. PWM(ШИМ) контроллеры более простые и дешёвые, они не могут трансформировать энергию, и потому солнечные панели не могут отдать а АКБ всю свою мощность, максимум 80% от паспортной мощности. А вот MPPT контроллеры отслеживают точку максимальной мощности и преобразуют энергию снижая напряжение и увеличивая ток зарядки, в итоге увеличивают отдачу солнечных батарей до 99%. Поэтому если вы ставите более дешёвый PWM контроллер, то увеличивайте массив солнечных батарей ещё на 20%.

Расчёт солнечных батарей для частного дома или дачи

Если вы не знаете ваше потребление и только планируете скажем запитать дачу от солнечных батарей, то потребление считается достаточно просто. Например у вас на даче будет работать холодильник, который по паспорту потребляет 370кВт*ч в год, значит в месяц он будет потреблять всего 30.8кВт *ч энергии, а в день 1.02кВт*ч. Также свет, например лампочки у вас энергосберегающие скажем по 12 ватт каждая, их 5 штук и светят они в среднем по 5 часов в сутки. Это значит что в сутки ваш свет будет потреблять 12*5*5=300 ватт*ч энергии, а за месяц «нагорит» 9кВт*ч. Также можно почитать потребление насоса, телевизора и всего другого что у вас есть, сложить всё и получится ваше суточное потребление энергии, а там умножить на месяц и получится некая примерная цифра.

Например у вас получилось в месяц 70кВт*ч энергии, прибавляем 40% энергии, которая будет теряться в АКБ, инверторе и пр. Значит нам нужно чтобы солнечные панели вырабатывали примерно 100кВт*ч. Это значит 100:30:7=0,476кВт. Получается нужен массив батарей мощностью 0,5кВт. Но такого массива батарей будет хватать только летом, даже весной и осенью при пасмурных днях будут перебои с электричеством, поэтому надо увеличивать массив батарей в два раза.

В итоге вышеизложенного в вкратце расчёт количества солнечных батарей выглядит так:

  • принять что солнечные батареи летом работают всего 7 часов с почти максимальной мощностью
  • посчитать своё потребление электроэнергии в сутки
  • Разделить на 7 и получится нужная мощность массива солнечных батарей
  • прибавить 40% на потери в АКБ и инверторе
  • прибавить ещё 20% если у вас будет PWM контроллер, если MPPT то не нужно

    Пример: Потребление частного дом 300кВт*ч в месяц, разделим на 30 дней = 7кВт, разделим 10кВт на 7 часов, получится 1,42кВт. Прибавим к этой цифре 40% потерь на АКБ и в инверторе, 1,42+0,568=1988ватт. В итоге для питания частного дома в летнее время нужен массив в 2кВт. Но чтобы даже весной и осенью получать достаточно энергии лучше увеличить массив на 50%, то-есть ещё плюс 1кВт. А зимой в продолжительные пасмурные периоды использовать или бензогенератор, или установить ветрогенератор мощностью не менее 2кВт. Более конкретно можно рассчитать основываясь на данных архива погоды по региону.

    Стоимость солнечных батарей и аккумуляторов

    Цены на солнечные батареи и оборудование сейчас достаточно разнятся, одна и также продукция может по цене в разы отличаться у разных продавцов, поэтому ищите дешевле, и у проверенных временем продавцов. Цены на солнечные батареи сейчас в среднем 70 рублей за ватт, то-есть массив батарей в 1кВт обойдётся примерно в 70т.руб, но чем больше партия тем больше скидки и дешевле доставка.

    Качественные специализированные аккумуляторы стоят дорого, аккумулятор 12в 200Ач обойдётся в среднем в 15-20т.рублей. Я использую вот такие акб, про них написано в этой статье Аккумуляторы для солнечных батарей Автомобильные в два раза дешевле, но их надо ставить в два раза больше чтобы они прослужили хотябы лет пять. А так-же автомобильные АКБ нельзя ставить в жилых помещениях так-как они не герметичны. Специализированные при разряде не блолее 50% прослужат 6-10 лет, и они герметичные, ничего не выделяют. Можно купить и дешевле если брать крупную партию, обычно продавцы дают приличные скидки.

    Остальное оборудование наверно индивидуально, инверторы бывают разные, и по мощности, и по форме синусоиды, и по цене. Так-же и контроллеры заряда могут быть как дорогие со всеми функциями, в том числе с о связью с ПК и удалённым доступом через интернет.

    Источник

    Пример расчета солнечных батарей для дома

    Сознаемся мы себе или нет – сути это не меняет. Очень часто мы, приступая к реализации серьезных, тем более, менее серьезных своих планов, пренебрегаем проектами или расчетами. Это, как правило, не приводит к ожидаемым результатам, либо итоговые временные или материальные затраты оказываются совсем не ожидаемыми. Конечно же все необходимо считать. С этим вряд ли кто не согласится.

    Что касается солнечных батарей, расчет их мощности просто необходим, поскольку малейшее отклонение в любую сторону приводит к изменению материальных затрат на порядок.

    Есть еще одна бесспорная польза от процедуры расчета – формируется осознанное четкое понимание порядка эксплуатации будущей солнечной электростанции. Только человек, эксплуатировавший в своем доме автономную систему электроснабжения, до конца поймет, что это означает.

    А понимание это сводится к одному: как сохранить каждый Ватт*час добытой энергии. В доме, электроснабжение которого осуществляется автономной системой, вы не увидите без надобности светящихся ламп освещения, как это часто бывает при традиционном электроснабжении.

    В процессе пользования солнечной электростанции у вас в доме могут появиться такие приборы, как датчики движения, таймеры для автоматического управления освещением, фотореле для управления наружным освещением и т.д. Это войдет в привычную норму.

    Вы не удивляйтесь, что я уделяю этому вопросу столько времени. Это действительно следует знать и понимать. Кто-то отнесет необходимость контроля каждого Ватт*час к недостаткам, я с ним не соглашусь.

    Во-первых, давайте вспомним тех у кого других вариантов электроснабжения просто нет. Во-вторых, когда это здравая экономия стала, вдруг, недостатком! Согласитесь, было бы расточительно “вбухивать” заведомо бОльшие деньги в систему электроснабжения только для того, чтобы бесконтрольно транжирить энергию.

    Начало расчета солнечной электростанции заключается в подсчете суммарной нагрузки потребления вашего дома. Примеров таких расчетов в разных интерпретациях много, и с описательной частью, и в режиме он-лайн. Ничего нового в данном случае выдумывать не стоит. Сначала ставится цель, потом ищутся пути её достижения. Также и здесь: сначала выясняются потребности, а потом рассчитываются технические и материальные возможности их удовлетворения.

    Подсчет суммарной нагрузки потребления

    Это первый этап расчета. Начинается он с того, что вы берете чистый лист бумаги и на нем составляете перечень всех приборов и устройств, которые, как вы предполагаете, будут использоваться в доме. Для начала делаете этот перечень не вникая в количественный и качественный его состав. На первом этапе расчета, если вам не приходилось его делать, трудно сделать заключение о том, целесообразно или нет оставлять тот или иной прибор в списке. Добавлять, вычеркивать или заменять будем после, когда порядок материальных затрат будет ясен.

    Следующим шагом будет выяснение потребляемой мощности каждого из приборов. Это можно выяснить из паспортов на приборы или посмотреть бирки на самих приборах, где указаны их характеристики, в том числе и мощность потребления. В крайнем случае, если нет паспортов и бирок, можно выяснить необходимую информацию у менеджеров продаж в магазинах. Ну и, наконец, у вас же под рукой интернет, эти данные можно поискать через поисковые системы.

    Я же проставляю ориентировочные числа, только лишь для того, чтобы показать порядок действий:

    Наименование Мощность, Вт
    Энергосберегающая лампа 11
    Энергосберегающая лампа 8
    Телевизор 150
    Электронасос 600
    Утюг 1500
    Ноутбук 350
    Холодильник 250
    Электрочайник 1000
    Стиральная машина 1500
    Микроволновая печь 1500
    Пылесос 700

    Если вы обратили внимание на первые две позиции, то, как видите, я разделил лампы с разной мощностью потребления. Нет необходимости в маленьких и редко посещаемых помещениях ставить лампы такие же, как и в жилых комнатах. А поскольку следующим шагом будет простановка общего времени работы этих приборов в течение суток, то и нет смысла эти лампы объединять в одной позиции.

    Проставляем количество и общее время работы в сутки:

    Наименование Мощность, Вт Кол-во, шт. Время, час
    Энергосберегающая лампа 11 5 4,0
    Энергосберегающая лампа 8 3 0,2
    Телевизор 150 1 1,5
    Электронасос 600 1 0,6
    Утюг 1500 1 0,3
    Ноутбук 350 1 1,0
    Холодильник 250 1 12,0
    Электрочайник 1000 1 1,0
    Стиральная машина 1500 1 0,4
    Микроволновая печь 1500 1 1,0
    Пылесос 700 1 0,3

    Следует пояснить результаты в последнем столбце. К примеру, если вы пылесосом пользуетесь не ежедневно, а один раз в неделю по 2 часа, то в месяц общее время составит 2 Х 4 = 8 часов, т.е. в сутки 8 часов : 30 = 0,3 часа. То же самое и с насосом. Если вам приходится накачивать воду, предположим, два раза в неделю и этот процесс длится 2 часа, то 2 Х 2 = 4 часа, 4 Х 4 = 16 часов, 16 : 30 = 0,6 часов. Разумеется округляете в большую сторону.

    Теперь мы можем посчитать сколько каждый из приборов потребляет электроэнергии в сутки:

    Наименование Мощность, Вт Кол-во, шт. Время, час Вт*час
    Энергосберегающая лампа 11 5 4,0 220,0
    Энергосберегающая лампа 8 3 0,2 4,8
    Телевизор 150 1 1,5 225,0
    Электронасос 600 1 0,6 360,0
    Утюг 1500 1 0,3 450,0
    Ноутбук 350 1 1,0 350,0
    Холодильник 250 1 12,0 3000,0
    Электрочайник 1000 1 1,0 1000,0
    Стиральная машина 1500 1 0,4 600,0
    Микроволновая печь 1500 1 1,0 1500,0
    Пылесос 700 1 0,3 210,0

    Завершающая стадия подсчета суточного потребления – сложить все результаты последнего столбца. Результат получится: 7919,8 Вт*час в сутки.

    Ну, что ж, давайте приступим к расчету солнечных батарей. У нас есть величина суточного потребления в размере 7919,8 Вт*час, от которой мы и будем “отталкиваться”.

    Выбор величины напряжения постоянного тока системы

    Выбор величины напряжения системы необходим, во-первых, для выбора приборов системы с точки зрения их согласованности по напряжению, инвертора, контроллера заряда батарей, во-вторых, от величины этого напряжения будут зависеть схемы соединения солнечных модулей и аккумуляторных батарей, ну и, в третьих, для дальнейших расчетов солнечных батарей.

    Обычно для автономных систем электроснабжения частного жилого дома выбирается либо 12 В, либо 24 В. Если, конечно, система электроснабжения не слишком мощная и эта, её мощность, не вынуждает прибегать к напряжению 36 В или, допустим, 48 В, чтобы снизить токи в цепях, а значит, иметь возможность использовать провод меньшего сечения, т. е. более дешевый.

    В нашем случае я предлагаю придерживаться следующей логики: если вы не планируете наращивать систему электроснабжения, а предполагаете ограничится 1000 Вт или 2000 Вт, то вполне достаточно остановиться на 12 В.

    В случае же, если в ваших планах её наращивать, кроме того, эксплуатировать в зимний период, разумнее строить 24-х вольтовую систему. Это будет разумно потому, что на определенном этапе эксплуатации системы электроснабжения вы, скорее всего, придете к неизбежности дополнить её ветрогенератором. Это вполне логично и дает системе неоспоримые преимущества при эксплуатации круглый год. Мы об этом еще поговорим, когда коснемся темы ветрогенераторов.

    Так вот, чтобы вам не пришлось менять однажды установленные приборы, лучше сразу выбрать вариант на 24 В, тогда и ветрогенератор с выходом в 24 В без особых затруднений впишется в вашу существующую систему.

    И так. Предположим, что мы останавливаемся на варианте системы электроснабжения 24 В. Я этот выбор делаю в нашем примере, чтобы показать более наглядный пример расчета. Вы же поступайте так, как считаете нужным исходя из ваших данных, конечно с учетом вышесказанного.

    Определение требуемого количества энергии в сутки

    Для определения требуемого количества энергии в сутки нам необходимо вычисленное намизначение суточного потребления – 7919,8 Вт*час разделить на выбранное нами напряжение системы – 24 В. Результат этого деления составит 330 А*час.

    Но мы не должны забывать, что инвертор сам потребляет часть энергии на собственные нужды. Значит мы должны предусмотреть запас энергии и для него. Исходя из этого полученный результат 330 А*час мы умножим на коэффициент 1,2 и получим 396 А*час.

    Таким образом мы вычислили суточную величину энергии необходимой для обеспечения электроснабжения наших потребителей. И она составила 396 А*час.

    Что не следует забывать при выборе солнечных модулей

    Бесспорно электрические характеристики фотоэлектрических модулей играют первостепенную важность. Мощность, напряжение, ток. Но нельзя не обращать внимание и на такие параметры, как габариты, конструктивное исполнение, вес и т. д.

    Давайте по порядку перечислим характеристики и параметры этих устройств и попутно отметим, как та или иная величина этих показателей может повлиять на дальнейшую эксплуатацию.

    Напряжение

    Начнем, конечно же, с напряжения. От выбора величины напряжения будет зависеть выбор контроллера заряда батарей, выбор напряжения аккумуляторов и, соответственно, схема их соединения.

    В этом выборе догм нет, вы можете выбирать любое напряжение. Но! Самое главное, чтобы оно было стандартизированным. В противном случае вы столкнетесь со сложностью подбора такого оборудования, как контроллер заряда, инвертор, аккумуляторные батареи. Даже исходя из стандартизированной линейки напряжений, есть смысл посмотреть на какие напряжения доступны все необходимые приборы. Это, как правило, 12 Вольт, 24 Вольта, 48 Вольт.

    Здесь необходимо сделать небольшую ремарку. Вы обращали внимание на то, что величина напряжения, а их для фотоэлектрического модуля приводят, как правило две (напряжение максимальной мощности и напряжение холостого хода), отличается от стандартного в большую сторону. Это необходимо для того, чтобы обеспечить полный заряд аккумуляторов. Этот запас предназначается для компенсации потерь в системе и учитывает работу модуля в реальных условиях, когда солнечная инсоляция не равна 1000 Вт/кв. м, температура не соответствует 25 градусам по Цельсию.

    Мы остановились на 12, 24, 48 Вольтах. Другие величины выбирать смысла уже не имеет по той причине, что найти, при необходимости, устройство с иным напряжением будет сложнее. Зачем заведомо создавать себе трудности.

    Учесть следует и такой момент, что некоторые модули рассчитаны на нестандартные напряжения и предназначены для работы с сетевыми инверторами. По этой причине нас они интересовать не могут.

    Вообще главным принципом построения любой системы должно быть – по-возможности, избегать использование уникальных устройств. Узлы и приборы должны быть стандартными и максимально доступными. Только в этом случае вы обеспечите продолжительную работоспособность вашей системы.

    Мощность и ток

    Разумеется общую мощность вы набираете из тех модулей, напряжение которых соответствует выбранному ранее для системы. Напоминать, что они должны быть с одинаковыми характеристиками, думаю, не надо.

    Путем соединения их либо параллельно, если напряжение каждого из них равно выбранному, либо последовательно, в случае, когда напряжение каждого из них меньше выбранного. Ну и последовательно-параллельно, чтобы обеспечить суммарную мощность при обеспечении выбранного напряжения системы. Кто пропустил статью “Схема подключения солнечных батарей”, рекомендую прочитать.

    Как только вы определились с количеством модулей и схемой их соединения, можете на основании результирующего тока сделать выбор контроллера заряда, ведь напряжение системы вами уже выбрано.

    Габариты и вес

    Помня такую истину, что каждое дополнительное электрическое соединение в системе повышает вероятность отказа (поломки), мы понимаем, что единый модуль соответствующий требуемым мощности и напряжению, был бы идеальным вариантом для нас. Ни тебе лишних соединений, ни тебе лишних проводов.

    Но мы же понимаем, что это невозможно. Да и по большому счету не нужно. Не нужно хотя бы потому, что в этом случае мы лишаем нашу систему гибкости, да и ремонтопригодность тоже пострадает. Я не говорю уже про вес, который будет играть не последнюю роль при монтаже.

    Гораздо сложнее будет нарастить систему, изменить напряжение системы, если такое вдруг понадобиться. Отремонтировать модуль, в конце концов. Опять же высокая парусность. Это тоже не следует снимать со счетов, ведь вы будете монтировать модули на открытой всем ветрам поверхности.

    Тем не менее, не забывая про упомянутую истину, мы должны обратить внимание на габариты модулей с точки зрения монтажа (не каждый габарит позволит производить монтаж без подъемных механизмов), укладки на кровле (отсутствие затенения на протяжении всего светового дня).

    С другой стороны слишком мельчить с габаритами – дороже обойдется.

    Конструктивное исполнение

    Конструктивное исполнение тоже играет немаловажную роль как в плане эксплуатационных характеристик так и с финансовой точки зрения. Бескаркасные модули, к примеру, будут стоить дешевле, но использовать именно их можно и нужно лишь в том случае, если у вас есть возможность выполнить монтаж таким образом, чтобы обеспечить их нормальную эксплуатацию без каркасов.

    Либо вы имеете возможность самостоятельно изготовить каркас и это обойдется вам дешевле. Только следует учесть и вопрос герметизации модуля, поскольку при попадании воздуха и влаги происходит окисление контактов. Это значительно сокращает срок их службы.

    Такие вещи, как стекла. Они бывают разные и от этого тоже зависит цена. Обычные стекла приводят к потерям до 15% из-за отражения. Стекла, выдерживающие ударную нагрузку, может быть, и будут лишними, а вот стекла с повышенной степенью прозрачности рассмотреть смысл имеет.

    Источник

  • Оцените статью