Применение солнечных батарей презентация

Презентация на тему: Солнечные батареи

Солнечные батареи Выполнил учащийся 9 классаКазанцев Владислав

ЦЕЛЬ: изучить основные направления преобразования и использования солнечной энергии;рассмотреть применение нанотехнологий в гелиоэнергетике. нашей исследовательской работы:на основе полученных знаний изготовить солнечные батареи и исследовать ее возможности

НАПРАВЛЕНИЯ ИСПОЛЬЗОВАНИЯ СОЛНЕЧНОЙ ЭНЕРГИИ Преобразование солнечной энергии в тепловую Солнечный концентратор Солнечный коллектор Установка для тепловых испытаний

НАПРАВЛЕНИЯ ИСПОЛЬЗОВАНИЯ СОЛНЕЧНОЙ ЭНЕРГИИ Преобразование солнечной энергии в электрическую Фотоэлементы 1-го поколения на основе кристаллического кремнияКремниевые солнечные батареи Фотоэлементы 2-го поколения наоснове тонких пленок полупроводников

КРЕМНИЕВЫЕ СОЛНЕЧНЫЕ БАТАРЕИ Основой устройства является поверхность соприкосновения двух типов кремния. Верхняя часть элемента прозрачна и солнечный свет без препятствий падает непосредственно на кремний. При попадании солнечного света на поверхность фотоэлемента, между двумя типами кремния возникает электрическое напряжение. При подключении к элементу нагрузки, сила тока возрастает пропорционально яркости солнечного света. Последовательно-параллельно соединенные ячейки образуют солнечную батарею.

DSCDSC Нанотехнологии Пластиковые солнечные батареи Мультислойные фотоэлементы

ПРИМЕНЕНИЕ СОЛНЕЧНЫХ БАТАРЕЙ Солнечная электростанция в пустыне Сахара Солнечный город космос Трактор на нанобатареях

Солнечная батарея из подручного материала Этап1: Зачистка медной пластины для окисленияЭтап2: Нагревание медной пластины для образования тонкого слоя оксида меди (CuO)Этап3: Использование пластины

Солнечная батарея на диодах При освещении светом полупроводник становится источником электрического тока – фотоэлементом. Чтобы превратить диод в фотоэлемент нужно добраться до полупроводникового кристалла, т.е. его вскрыть.Группы диодов собираются на пластине из текстолита по схеме

ВЫВОДЫ Гелиоэнергетика, как альтернативное направление получения электроэнергии, становится популярной и перспективной.Нанотехнологии помогут человечеству преобразовать жизнь, уменьшить отрицательное воздействие традиционной энергетики на нашу планету. Создание новых видов солнечных батарей дает огромные знания не только по физике, но и затрагивает другие науки.

Источник

Презентация по физике на тему:»Солнечная батарея и ее использование в физике»
презентация к уроку по физике (8 класс) по теме

Презентация по физике 8 класса на тему:»Солнечная батарея и ее использование в физике»

Скачать:

Вложение Размер
презентация по физике 8 класс 1.52 МБ

Предварительный просмотр:

Подписи к слайдам:

Презентация на тему: «Солнечная батарея и ее использование в физике.» Выполнила: учитель физики первой категории Ветчинова Елена Евгеньевна МОБУ « Паникинская СОШ»

Солнечная энергетика — направление нетрадиционной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует возобновляемый источник энергии и является экологически чистой, то есть не производящей вредных отходов. Производство энергии с помощью солнечных электростанций хорошо согласовывается с концепцией распределённого производства энергии.

История открытия солнечной энергии Первые солнечные нагреватели появились во Франции. Естествоиспытатель Ж. Бюффон создал большое вогнутое зеркало, которое фокусировало в одной точке отраженные солнечные лучи. Это зеркало было способно в ясный день быстро воспламенить сухое дерево на расстоянии 68 метров. Вскоре после этого шведский ученый Н. Соссюр построил первый водонагреватель. Это был всего лишь деревянный ящик со стеклянной крышкой, однако вода, налитая в немудреное приспособление, нагревалась солнцем до 88 ° С. В 1774 году великий французский ученый А. Лавуазье впервые применил линзы для концентрации тепловой энергии солнца. Вскоре в Англии отшлифовали большое двояковыпуклое стекло, расплавлявшее чугун за три секунды и гранит — за минуту.

Первые солнечные батареи, способные преобразовывать солнечную энергию в механическую, были построены опять-таки во Франции. В конце XIX века на Всемирной выставке в Париже изобретатель О. Мушо демонстрировал инсолятор — аппарат, который при помощи зеркала фокусировал лучи на паровом котле. Котел приводил в действие печатную машину, печатавшую по 500 оттисков газеты в час. Через несколько лет в США построили подобный аппарат мощностью в 15 лошадиных сил.

Подходили годы, инсоляторы использующие солнечную энергию совершенствовались, но принцип оставался прежним: солнце — вода — пар. Но вот, в 1953 году ученые Национального аэрокосмического агентства США создали настоящую солнечную батарею — устройство, непосредственно преобразующее энергию солнца в электричество.

Полупроводниковые солнечные батареи имеют очень важное достоинство — долговечность. При том, что уход за ними не требует от персонала особенно больших знаний. Вследствие этого солнечные батареи становятся все более популярными в промышленности и быту.

Большое количество научных экспериментов и тонких технологий требуют подчас создания огромной температуры. Идеальный вариант — солнечная энергия, способная создавать гигантские температуры на небольшой площади. Самая известная «солнечная печь» действует во французском местечке Одило . Ее подвижные зеркала концентрируют энергию солнца с большой площади на площадке менее одного квадратного метра. Эта площадка находится на небольшой башне перед системой зеркал. В ясные дни в фокусе зеркал удается достигнуть температуры в 3300 ° С. С ее помощью в Одило создают материалы с особенными свойствами, которые невозможно получить в традиционной металлургии. Солнечные батареи на верблюде

Способы получения электричества и тепла из солнечного излучения Получение электроэнергии с помощью фотоэлементов. Преобразование солнечной энергии в электричество с помощью тепловых машин: паровые машины (поршневые или турбинные), использующие водяной пар, углекислый газ, пропан-бутан, фреоны; двигатель Стирлинга и т. д. гелиотермальная энергетика — Нагревание поверхности, поглощающей солнечные лучи, и последующее распределение и использование тепла (фокусирование солнечного излучения на сосуде с водой для последующего использования нагретой воды в отоплении или в паровых электрогенераторах).

Солнечные аэростатные электростанции (генерация водяного пара внутри баллона аэростата за счет нагрева солнечным излучением поверхности аэростата, покрытой селективно-поглощающим покрытием). Преимущество — запаса пара в баллоне достаточно для работы электростанции в темное время суток и в ненастную погоду.

Фотоэлемент — электронный прибор, который преобразует энергию фотонов в электрическую энергию. Первый фотоэлемент, основанный на внешнем фотоэффекте, создал Александр Столетов в конце XIX века.

Физический принцип работы фотоэлемента Преобразование энергии в ФЭП основано на фотоэлектрическом эффекте, который возникает в неоднородных полупроводниковых структурах при воздействии на них солнечного излучения. Неоднородность структуры ФЭП может быть получена легированием одного и того же полупроводника различными примесями (создание p-n переходов) или путём соединения различных полупроводников с неодинаковой шириной запрещённой зоны — энергии отрыва электрона из атома (создание гетеропереходов), или же за счёт изменения химического состава полупроводника, приводящего к появлению градиента ширины запрещённой зоны (создание варизонных структур). Эффективность преобразования зависит от электрофизических характеристик неоднородной полупроводниковой структуры, а также оптических свойств ФЭП , среди которых наиболее важную роль играет фотопроводимость. Она обусловлена явлениями внутреннего фотоэффекта в полупроводниках при облучении их солнечным светом.

Основные необратимые потери энергии в ФЭП связаны с:

Солнечные батареи В наше время тема развития альтернативных способов получения энергии как нельзя более актуальна. Традиционные источники стремительно иссякают и уже через каких-нибудь пятьдесят лет могут быть исчерпаны. И уже сейчас энергетические ресурсы довольно дороги и в значительной мере влияют на экономику многих государств. Всё это заставляет жителей нашей планеты искать новые способы получения энергии. И одним из наиболее перспективных направлений является получение солнечной энергии. Таким образом, мы уже используем солнечную энергию в своих нуждах и все традиционные источники энергии (нефть, уголь, торф) появились на земном шаре благодаря Солнцу.

Сырье, или из чего делают солнечные батареи Ученые заявляют, что кремний (основной ресурс для производства большинства типов солнечных батарей) — второй по распространенности элемент на нашей планете. На кремний приходится более четверти общей массы земной коры, но на какой кремний? Дело в том, что в большинстве случаев это вещество встречается в виде окиси — SiO2 (припоминаете песок из детской песочницы?), а вот добыть чистый силициум ( Silicium так химики называют кремний) из этого соединения сложно, даже проблематично. Здесь имеют место стоимостные факторы, особенности технологий. Интересно отметить, что себестоимость чистого « солнечного » кремния равна себестоимости урана для АЭС, вот только запасов кремния на нашей планете в 100 тысяч раз больше.

Сегодня, в эпоху нанотехнологий, когда человек с легкостью завоевывает микромир, научные вклады инженеров могут в несколько раз ускорить процесс развития « солнечной » отрасли. Ярким примером тому может послужить заявление сотрудников норвежской компании Scatec AS. Ученые уверены, что панели, изготовленные с применением нанотехнологий, позволят снизить стоимость солнечной энергии по сравнению с распространенными сейчас фотогальваническими ячейками в 2 раза.

Типы солнечных элементов

Солнечный коллектор Эти устройства сегодня представляют собой наиболее распространённый тип солнечных преобразователей. Работа устройства осуществляется при температуре от ста до двухсот градусов. Следует сказать, что главное преимущество использования теплового солнечного преобразователя заключается в обеспечении высокого КПД.

Солнечная батарея — бытовой термин, используемый в разговорной речи или не научной прессе. Обычно под термином « солнечная батарея » подразумевается несколько объединённых фотоэлектрических преобразователей (фотоэлементов) — полупроводниковых устройств, прямо преобразующих солнечную энергию в постоянный электрический ток . В отличие от солнечных коллекторов, производящих нагрев материала-теплоносителя, солнечная батарея производит непосредственно электричество. Хотя, для производства электричества из солнечной энергии используются и солнечные коллекторы: собранную тепловую энергию можно использовать и для вырабатывания электричества. Крупные солнечные установки, использующие высококонцентрированное солнечное излучение в качестве энергии для приведения в действие тепловых и др. машин (паровой, газотурбинной, термоэлектрической и др.), называются Гелиоэлектростанции (ГЕЭС).

Достоинства Общедоступность и неисчерпаемость источника. Теоретически, полная безопасность для окружающей среды, хотя существует вероятность того, что повсеместное внедрение солнечной энергетики может изменить альбедо земной поверхности и привести к изменению климата (однако при современном уровне потребления энергии это крайне маловероятно).

Недостатки Зависимость от погоды и времени суток. Как следствие необходимость аккумуляции энергии. Высокая стоимость конструкции. Необходимость постоянной очистки отражающей поверхности от пыли. Нагрев атмосферы над электростанцией.

Технологии солнечной энергетики Более чем за полвека ученые перепробовали огромное количество различных вариантов и способов добычи и использования солнечной энергии. Дорогие и малоэффективные технологии уступали место привлекательным и дешевым разработкам, которые не прекращают совершенствоваться на протяжении многих лет. Выделим самые распространенные группы технологий « солнечной » отрасли и постараемся выявить наиболее привлекательные варианты для потребителя. Для начала стоит определиться с классификацией « солнечных » технологий, разделенных учеными на 4 группы: активные, пассивные, непосредственные (или « прямые ») и непрямые (косвенные).

Источник

Солнечные батареи. Альтернативные источники энергии. — презентация

Презентация была опубликована 5 лет назад пользователемГульдана Хабдуллина

Похожие презентации

Презентация на тему: » Солнечные батареи. Альтернативные источники энергии.» — Транскрипт:

2 Альтернативные источники энергии

3 Солнечные батареи в современном мире – одно из немногих, и одно из самых перспективных средств для получения энергии из возобновляемых источников. Актуальность использования СБ в качестве источника энергии со временем будет только возрастать. В настоящее время ведутся многочисленные научные исследования, в целях которых — повышение эффективности работы СБ, и повышение их доступности.

4 Обычно под термином «солнечная батарея» подразумевается несколько объединённых фотоэлектрических преобразователей (фотоэлементов) полупроводниковых устройств, прямо преобразующих солнечную энергию в постоянный электрический ток [1]. Солнечные батареи «Схема работы солнечных батарей»

5 Солнечная батарея — полупроводниковый фотоэлектрический генератор, непосредственно преобразующий энергию солнечной радиации в электрическую энергию С конструктивной точки зрения солнечная батарея – плоская панель, состоящая из размещенных вплотную фотоэлементов и электрических соединений, защищенная с лицевой стороны прозрачным твердым покрытием. Число фотоэлементов в батарее может быть различным, от нескольких десятков до нескольких тысяч.

6 Электрический ток в солнечной батарее возникает в результате процессов, происходящих в фотоэлементах при попадании на них солнечного излучения. Действие СБ основано на использовании вентильного (барьерного) фотоэффекта — возникновении электродвижущей силы в p-n переходе под действием света.

7 Энергетические характеристики солнечных батарей определяются полупроводниковым материалом, конструктивными особенностями, количеством элементов в батарее. Распространенные материалы: Si — КПД до 20% GaAs – наиболее перспективный материал, КПД до 40%. CdTe (теллурид кадмия) – так же перспективный материал, пленки CdTe достаточно дешевы в изготовлении.

8 Распространенные конструктивные решения: СЭ на барьерах Шоттки СЭ на гетеропереходах Каскадные СЭ – СЭ с несколькими p-n переходами

9 Принцип работы солнечных батарей Солнечный элемент на p-n структурах. Элемент солнечной батареи представляет собой пластинку кремния n-типа, окруженную слоем кремния р-типа толщиной около одного микрона, с контактами для присоединения к внешней цепи. Когда СЭ освещается, поглощенные фотоны генерируют неравновесные электрон — дырочные пары. Электроны, генерируемые в p-слое вблизи p-n-перехода, подходят к p-n- переходу и существующим в нем электрическим полем выносятся в n-область.

10 Аналогичным образом и избыточные дырки, созданные в n-слое, частично переносятся в p-слой (рис. а). В результате n-слой приобретает дополнительный отрицательный заряд, а p-слой – положительный. Снижается первоначальная контактная разность потенциалов между p- и n-слоями полупроводника, и во внешней цепи появляется напряжение (рис. б). Отрицательному полюсу источника тока соответствует n-слой, а p-слой – положительному.

11 ВАХ солнечного элемента: Величина установившейся фотоЭДС при освещении перехода излучением постоянной интенсивности описывается уравнением вольт — амперной характеристики (ВАХ): U = (kT/q)ln(1+(I ф -I)/Is) где Is – ток насыщения, I ф – фототок. Уравнение ВАХ справедливо и при освещении фотоэлемента светом произвольного спектрального состава, изменяется лишь значение фототока Iф. Максимальная мощность отбирается в том случае, когда фотоэлемент находится в режиме, отмеченном точкой а.

12 Солнечные элементы на барьерах Шоттки.

13 Две основные компоненты фототока связаны с генерацией носителей в обедненном слое и в базовой области. Сильное поле в обеднённом слое выносит из него генерируемые светом носители еще до того, как они успевают прорекомбинировать, вследствие чего фототок оказывается равным (1) где a – коэффициент поглощения, F(λ) – плотность потока падающих фотонов в единичном спектральном интервале, Т(λ ) — коэффициент пропускания металлом монохроматического света с длиной волны λ. Фототок, создаваемый генерацией носителей в базовой области, описывается выражением (2) Полный фототок равен сумме выражений (1) и (2). Для увеличения фототока следует повышать коэффициент пропускания Т и диффузионную длину Ln.

14 Преимущества солнечных элементов с барьерами Шоттки: Изготовление таких элементов можно осуществлять при низких температурах, поскольку отпадает необходимость в проведении высоковольтной операции — диффузии; Применение данной технологии при создании поликристаллических и тонкоплёночных солнечных элементов; Высокая радиационная стойкость элементов, поскольку вблизи их поверхности существует сильное электрическое поле; Большой выходной ток и хороший спектральный отклик, что обусловлено непосредственным примыканием обеднённого слоя к поверхности полупроводника, вследствие чего ослабляется негативное влияние малых времен жизни и высокой скорости поверхностной рекомбинации.

15 Солнечные элементы на гетеропереходах. Гетероструктурные СЭ на основе GaAs имеют более высокий КПД, чем кремниевые СЭ (монокристаллические и особенно — аморфного кремния). КПД арсенид-галлиевых солнечных батарей доходит до 35-40%. Их максимальная рабочая температура — до +150 о С, в отличии от + 70 о С — у кремниевых батарей. Их теоретический КПД выше, так как ширина запрещённой зоны у них практически совпадает с оптимальной шириной запрещённой зоны для полупроводниковых преобразователей солнечной энергии =1,4 эВ. У кремниевых этот показатель =1,1 эВ.

16 Энергетическая диаграмма n-p- гетероперехода Гетеропереходы — это переходы, образующиеся при контакте двух различных полупроводников.

17 Преимущества солнечных элементов с гетеропереходами перед обычными солнечными элементами с p — n- переходами: Увеличение спектрального отклика в коротковолновом диапазоне при условии, что энергия Eg1 достаточно велика и фотоны с высокой энергией поглощаются в обедненном слое второго полупроводника; Понижение последовательного сопротивления при условии, что первый полупроводник можно сильно легировать, не ухудшая при этом условия прохождения света через него; Более высокая радиационная стойкость, если первый слой полупроводника достаточно толстый и полупроводник имеет широкую запрещенную зону.

18 Каскадные солнечные элементы: Большинство современных СЭ обладают одним p-n-переходом. В таком элементе свободные носители заряда создаются только теми фотонами, энергия которых больше или равна ширине запрещенной зоны. Другими словами, фотоэлектрический отклик однопереходного элемента ограничен частью солнечного спектра, энергия которого выше ширины запрещенной зоны, а фотоны меньшей энергии не используются. Преодолеть это ограничение позволяют многослойные структуры из двух и более СЭ с различной шириной запрещенной зоны. Такие элементы называются многопереходными, каскадными или тандемными. Каскадные СЭ работают со значительно большей частью солнечного спектра, и эффективность фотоэлектрического преобразования у них выше.

19 В многопереходном солнечном элементе одиночные фотоэлементы расположены друг за другом таким образом, что солнечный свет сначала попадает на элемент с наибольшей шириной запрещенной зоны, при этом поглощаются фотоны с наибольшей энергией. Пропущенные верхним слоем фотоны проникают в следующий элемент с меньшей шириной запрещенной зоны и т.д.

20 Применение солнечных батарей: В настоящее время СБ главным образом используются в космонавтике, для снабжения электроэнергией аппаратуры спутников и систем жизнеобеспечения космических кораблей и станций, а также заряжают электрохимические аккумуляторы, используемые на теневых участках орбиты. На земле СБ в основном используются для питания устройств автоматики, переносных радиостанций и радиоприёмников, для катодной антикоррозионной защиты нефти- и газопроводов. Всё более часто СБ применяются в различных бытовых устройствах, которые доступны широкому кругу потребителей.

21 Солнечная энергетика в Казахстане

22 Ежемесячная и годовая суммарная солнечная освещенность горизонтальной поверхности, МДж/м 2

23 Ежемесячная и годовая суммарная солнечная освещенность поверхности перпендикулярной к потоку излучения, МДж/м 2

24 Прямое солнечное излучение на поверхность, перпендикулярную к излучению (Источник: NASA)

25 Солнечное излучение на горизонтальную поверхность (Источник: NASA)

26 Использование солнечной энергии в Казахстане в целом незначительно, при том, что годовая длительность солнечного света составляет часов в год, а оцениваемая мощность к Вт на 1 м² в год. Запуск производственной линии дочернего предприятия Казатомпрома ТОО «Astana Solar» консорциум «Солнечная крыша» в Казахстане, состоящий из фирм PRETHERM solutions GmbH, BAE Batterien GmbH, DPU Investment GmbH и PRETHERM GmbH соорудил «солнечную крышу» в Байконуре

Источник

Читайте также:  Если подключить солнечные панели без
Оцените статью