- Какими бывают стекла для защиты солнечных батарей
- Стекло для солнечных батарей – виды и характеристики
- 1. Листовое «float» стекло.
- 2. Каленое стекло для солнечных батарей
- 3. Антибликовое стекло для солнечных батарей
- 4. «Sandwich» — двойное стекло для защиты солнечных батарей
- 5. Полимерная защита солнечных батарей
- Стеклянное покрытие солнечных батарей
- Несколько слов о стеклянном покрытии
- Закаленное стекло
- Прозрачные солнечные панели — новая попытка от китайских ученых
Какими бывают стекла для защиты солнечных батарей
Cовременные фотоэлектрические панели представляют собой сложную многослойную конструкцию. Центральную ее часть занимают уложенные рядами полупроводниковые ячейки, чрезвычайно чувствительные к механическим повреждениям. Чтобы полностью исключить контакт преобразователей с внешней средой, применяется специальная защита солнечных батарей. Ее основой являются прочные прозрачные покрытия, от свойств которых зависит производительность гелио модулей и срок их службы.
Стекло для солнечных батарей – виды и характеристики
Существует пять основных разновидностей стеклянного покрытия, отличающихся технологией изготовления, содержанием химических элементов-«присадок» и физико-техническими параметрами.
1. Листовое «float» стекло.
Применяется в наиболее дешевых модулях, изготовленных преимущественно малоизвестными китайскими фирмами. Отличительные черты:
- толщина и прочность выше, чем у классического оконного;
- присутствует антибликовая технология;
- качественная полировка;
- прозрачность в диапазоне 90-91%.
Такое покрытие солнечных батарей наименее эффективно и наиболее чувствительно к влиянию внешней среды. Из-за этого эксплуатационные характеристики «флоат» модификаций начинают быстро ухудшаться, в частности:
- снижается коэффициент светопропускания по причине механических микроповреждений полировки твердыми частицами песка и пыли;
- возникают перепады внутреннего напряжения под влиянием структурных изменений материала;
- уменьшается уровень поглощения электромагнитного фотонного потока.
Весь комплекс указанных проблем приводит к ускоренной деградации ячеек. В результате уже через 10-15 лет первоначальный КПД системы снижается на 20 и более процентов, что требует глубокой модернизации либо полной замены панелей.
2. Каленое стекло для солнечных батарей
Представляет собой более надежную защиту по нескольким причинам. Основная из них – специальная процедура термической закалки заготовок при температурах более 650°C. Вспомогательная причина – изменение химического состава стекловидной массы, за счет пониженного содержания оксида железа (Fe2O3) и повышенного – окислов свинца (PbO) и бария (B2О3).
Следствием этого являются следующие эксплуатационные характеристики:
- прочность, позволяющая сохранять целостность поверхности при ударном динамическом воздействии крупного града или сравнимых по размеру камешков на скоростях порядка 90-95 км/ч;
- аналогичный безопасный уровень статической нагрузки, примерно равный весу взрослого мужчины;
- более устойчивая кристаллическая решетка;
- прозрачность 92-93%.
Такое механически и химически модифицированное покрытие для панелей в солнечных электростанциях практически не поддается деформации и сохраняет все эксплуатационные качества на протяжении не менее 25 лет.
3. Антибликовое стекло для солнечных батарей
Защита фотоэлектрических ячеек листами данного класса не только сверхнадежна, но и отличается повышенной прозрачностью – 94-97%. Физически материал защитной поверхности представляет собой сложную кристаллическую структуру, полученную следующим путем:
- закаливание кремний-силикатной смеси по специальному графику повышения и понижения температур;
- первичная полировка;
- травление поверхности с процедурой вытеснения атомов кальция;
- напыление ионизированной калий кобальтовой антибликовой пленки по нанотехнологии NSTM (Nano Selective Transmission Modeling).
Для сравнения: аналогичная последней процедуре технология используется при изготовлении стекла наиболее престижных марок смартфонов. Результатом становится материал, чрезвычайно устойчивый ко всем типам механического, химического и биологического воздействия, и при этом максимально прозрачный.
4. «Sandwich» — двойное стекло для защиты солнечных батарей
Иначе такую технологию именуют «glass-glass», и сейчас она применяется во всех модулях высшей категории качества. Ее отличие от предыдущих вариаций состоит в использовании сразу двух типов покрытия.
Лицевая сторона панели защищается антибликовым листом, а тыльная, вместо стандартного металлического или полимерного основания – каленым высокопрочным стеклом.
Главное достоинство такой конструкции – устранение различного коэффициента теплового расширения на передней и задней поверхностях. Поскольку оба стеклянных листа имеют одинаковый состав, толщину и физические свойства, в центральной части панели отсутствует деформационное искажение.
На КПД это не влияет, но срок эффективной эксплуатации модулей «glass-glass» сразу возрастает на 25-30%.
5. Полимерная защита солнечных батарей
Последняя разновидность поверхностной защиты – пластичные полимерные покрытия. Они используются для гибких тонкопленочных панелей и обладают хорошими показателями прозрачности и прочности при кратно меньшей толщине, чем стеклянные аналоги.
Благодаря применению полимеров гибкие солнечные батареи последних поколений, при сравнимом номинальном КПД с «классикой»:
- в 12-15 раз тоньше;
- в 5-7 раз легче;
- в 1,5-2 раза эффективнее при высоких температурах.
Источник
Стеклянное покрытие солнечных батарей
Тот, кто построил загородный дом или капитальный дачный домик, непременно захочет обеспечить его бесперебойным автономным электроснабжением. При выборе солнечных батарей покупателя интересуют, прежде всего, мощность и эффективность гелиевых панелей. Но при этом мало кто интересуется такой немаловажной деталью оборудования, как прозрачное покрытие. А между тем стекло для солнечных панелей, его качество, прочность, прозрачность имеют огромное значение для эффективной работы.
Несколько слов о стеклянном покрытии
Понятно, что вкладывая деньги в столь дорогостоящее оборудование, которым являются солнечная домашняя электростанция, покупатель предполагает, что это – долгосрочные инвестиции, а, следовательно, это оборудование должно надежно функционировать не один десяток лет. Понимая это, ведущие мировые производители могут гарантировать бесперебойную работу своих изделий на срок до 25 лет. Для покупателя важно, чтобы этот производитель или его дилеры находились в пределах досягаемости потребителя. Тогда при выходе из строя какого-либо элемента его можно без проблем заменить по гарантии.
Пользуясь тем обстоятельством, что есть множество регионов, до которых крупные производители еще не добрались, этот рынок начали осваивать небольшие фирмы, реализующие свою продукцию по более низким ценам. Естественно, эта более низкая цена соответствует и качеству производимой продукции. Соответственно, срок гарантийного обслуживания уменьшается до двух лет. Срок службы изделия, его эффективность зависят от многих факторов. И во многом эта зависимость обусловлена качеством стеклянного покрытия.
Для снижения стоимости своей продукции маленькие фирмы используют чаще всего недорогое стекло. Это стекло может прослужить несколько лет, постепенно теряя свои первоначальные качества. Затем оно может помутнеть, а мутное стекло резко снижает эффективность солнечного модуля. Дешевые стекла по своей прочности, ударовыносливости в разы уступают дорогим покрытиям.
Реакция на ударное воздействие закаленного и обычного стекла
А если стекло не выдержит, например, ударов града, то это может создать очень серьезные проблемы. Даже через небольшую трещину вода может попасть во внутреннюю полость солнечного модуля и вызвать короткое замыкание. Кроме того, у дешевых стекол, как правило, отсутствует антибликовое покрытие, что также снижает эффективность изделия.
Поэтому при покупке гелиевых панелей обязательно следует проверять, какое именно стекло установлено на изделии. Это должно быть зафиксировано в спецификации на изделие. Если в спецификации отсутствует информация о качестве стекла, то самым разумным будет отказаться от покупки. Лучше всего в системах гелиевой энергетики зарекомендовало себя закаленное ударопрочное стекло с антибликовым покрытием. Конечно, такое стекло стоит намного дороже обычного листового стекла, но оно служит и гарантией того, что солнечная панель прослужит верой и правдой несколько десятилетий. В спецификации на изделие тип стекла, его характеристики должны быть указаны отдельным пунктом.
Осколки обычного и закаленного стекла
Листовое стекло различной толщины в качестве покрытия гелиевого модуля наиболее часто применяют малоизвестные фирмы для того, чтобы привлечь покупателей невысокой ценой изделий. Но, как уже было сказано, эффективность и качество таких изделий оставляют желать лучшего. Что касается продукции известных мировых производителей, то в некоторых их изделиях также применяется листовое стекло. Речь идет о солнечных батареях на базе аморфного кремния. При изготовлении панелей на базе аморфного кремния используется не кристаллический кремний, а соединение кремния с водородом – силан. Силан наносится тонким слоем на плоский стеклянный лист, как этого требует технология производства аморфных солнечных батарей. Но в качестве покрытия изделия обязательно используется ударопрочное закаленное стекло.
Закаленное стекло
Это стекло обладает свойствами, которые делают его незаменимым для применения в системах солнечного энергообеспечения. В процессе изготовления материал проходит стадию термической обработки (закалку). Во время этой технологической операции во внутреннем объеме стеклянной массы возникают механические напряжения, равномерно распределенные как по поверхности, так и в теле листа.
Именно благодаря этим физическим напряжениям с векторами сжатия и растяжения материал, полученный в результате такой термообработки, приобретает высокую механическую прочность, стойкость к мгновенным механическим воздействиям, а при разрушении образует мелкие осколки с затупленными концами и ребрами. Благодаря последней особенности закаленное стекло называют также безопасным стеклом.
Схема технологического процесса закалки стекла
Процесс изготовления закаленного стекла сам по себе очень сложный и требует больших затрат как по времени, так и энергетических. Главная технологическая операция – термохимическая обработка стекла. В процессе закалки стекло нагревается до температуры +650°С +700°С. При этом стеклянная масса становится мягкой. Сразу после нагрева материал попадает в камеру охлаждения, где он обдувается воздухом.
Это очень ответственная операция, так как при охлаждении необходимо постоянно контролировать поток воздушных струй, чтобы они равномерно распределялись по поверхности охлаждаемого листа. В этом режиме в поверхностных слоях стекла возникают мощные напряжения сжатия, а в самом теле материала возникают напряжения растяжения.
Распределение напряжений в закаленном стекле
В конечном итоге в материале образуется та самая система уравновешивающих напряжений, которая и придает стеклу высокую механическую и термическую устойчивость. Кроме этих основных видов внутренних напряжений в стекле могут возникать и другие напряжения. Эти побочные напряжения возникают от того, что отдельные части материала (например, керамика или металл) могут иметь различные коэффициенты теплового расширения и различные степени упругости. Эти напряжения для данного материала постоянны и не оказывают сколь-нибудь существенного влияния на качество конечного продукта.
Процесс изготовления закаленного стекла очень сложен и изобилует множеством нюансов, учесть которые невозможно без полностью автоматического контроля и управления. Только при таких условиях соблюдаются все основные технологические требования, и получается высококачественное закаленное стекло. После завершения процесса закалки любые операции по механической обработке стекла становятся невозможными. Поэтому процессу закалки подвергаются уже готовые листы, обрезанные заранее по нужным габаритам.
Прочность закаленного стекла
Готовое закаленное стекло выборочно проверяют на ударопрочность. Согласно методике проверки шестимиллиметровое закаленное стекло должно выдерживать удар металлического шарика весом в 250 граммов, который падает с высоты два метра. Но как показал ряд испытаний, качественно закаленное стекло выдерживает удар такого шарика, брошенного с высоты три метра. Восьмимиллиметровое закаленное стекло способно выдержать удар полукилограммовой гири, падающей с высоты два метра.
В заключение следует добавить, что на стекла, предназначенные для систем солнечной фотовольтаики, наносится анибликовое покрытие, которое не только повышает степень защиты от механических и химических воздействий, но и снижает пропускание лучей ультрафиолетовой и инфракрасной областей спектра, что предотвращает чрезмерный нагрев фотоэлементов.
Источник
Прозрачные солнечные панели — новая попытка от китайских ученых
Солнечная энергетика — один из трендов современности. В некоторых регионах при помощи солнечной энергии можно полностью удовлетворять свои нужды в электричестве. Для того, чтобы сделать фотоэлементы более эффективными, многие ученые готовы тратить время и ресурсы, причем немалые. Кому-то это удается, но пространство для маневра все равно остается.
Некоторые исследователи пытаются найти свой путь в этой сфере — например, сделать солнечные панели прозрачными. Это позволит расширить спектр их использования — размещать панели не только на крыше, но, например, в оконных проемах. Другими словами, заменять стекла в окнах на фотоэлементы.
Сообщения о прозрачных солнечных панелях появляются с завидной регулярностью, но пока что большинство экспериментов так и остаются экспериментами. Возможно, проект китайских ученых что-то изменит.
Дело в том, что они создали действительно прозрачные солнечные панели, где основную роль играет редкоземельный металл иттербий. Этот химический элемент способен излучать два «инфракрасных фотона» при поглощении одного «голубого». «Инфракрасные фотоны» игнорируются любыми материалами, кроме кремния, который, как известно, используется в качестве основного рабочего элемента солнечных панелей. Этот металл поглощает инфракрасные фотоны, излучая электрон. Получается, что на каждый «голубой» фотон кремний реагирует выделением двух электронов.
Получается, что прозрачные панели на 160% эффективнее обычных фотоэлементов (не на 200%, поскольку всегда есть потери).
Прозрачные фотоэлементы представляют собой полимерное стекло с включением наночастиц. Последние поглощают ультрафиолетовый свет, пропуская излучение других спектров. Все это позволяет добиться полной прозрачности фотоэлементов.
Положительным моментом является еще и то, что когда иттербий выделяет инфракрасные фотоны, они уходят в пространство под углом, который позволяет кремнию поглотить их. Как результат — можно создать окно, стекло в котором генерирует инфракрасные фотоны, а рамка, включающая кремний, способна поглощать их, генерируя электричество.
Правда, в конечном итоге мы получаем, мягко говоря, не очень эффективные солнечные батареи. Да, световое излучение синего спектра позволяет генерировать инфракрасные фотоны с эффективностью в примерно 180%. Но, к сожалению, прозрачные солнечные батареи способны поглощать свет синего спектра с эффективность лишь в 3%. Проблема состоит в том, что далеко не все фотоны улавливаются рамкой.
Тем не менее, даже это может быть отличным результатом, если прозрачные фотоэлементы внедрять повсеместно. КПД солнечных панелей такого типа можно улучшать, а если представить себе большое здание с окнами из прозрачных фотоэлементов, то речь идет о генерации значительных объемов электричества.
Возможно, увеличить эффективность солнечных батарей можно, изменив состав «стекла», что позволит получать больше «голубых» фотонов. Кроме того, кремний не единственный материал, который может использоваться для создания фотоэлементов. Есть и более эффективные — но они более дорогие (гораздо более дорогие).
Источник