Ток заряда автомобильного аккумулятора
Автомобильные аккумуляторы, независимо от их емкости, типа и размеров, в обязательном порядке должны быть хотя бы изредка заряжены в условиях, близких к идеальным. Это продлит жизнь аккумулятору и избавит от неприятных неожиданностей, особенно зимой. Только заражать АКБ нужно правильно, иначе в один прекрасный день аккумулятор без видимых на то причин, прикажет долго жить, не отходив и половину срока службы.
Содержание:
Как правильно заражать аккумулятор автомобиля
В принципе, существует только два метода зарядки аккумуляторной батареи. Первый метод предполагает зарядку постоянной силой тока, второй же проводится при постоянном значении напряжения на клеммах. Выбор способа зарядки зависит от типа аккумулятора, а они могут быть:
Тем не менее, зарядка производится от источника постоянного тока, напряжение на выходе которого должно быть выше, чем номинальное напряжение АКБ. В случае с автомобильными аккумуляторами для легковушек с бортовым напряжением 12 вольт, напряжение зарядки должно составлять 14-16 вольт.
Ток заряда свинцового аккумулятора
Для зарядки аккумуляторных батарей со свинцовыми пластинами применяют разные зарядные устройства, но основной задачей при зарядке АКБ станет как рассчитать ток зарядки аккумулятора и как ограничить ток зарядки, чтобы не допустить осыпания пластин и закипания электролита. Именно для этого применяются импульсные зарядные устройства, которые делают всю работу автоматически.
Зарядные устройства с ручной регулировкой параметров, в частности тока зарядки, требуют постоянного контроля процесса, чтобы вовремя изменить характеристики зарядного тока. Ток, время заряда и напряжение — это основные параметры, которые придется контролировать при зарядке вручную или же их будет регулировать импульсное зарядное устройство. Рассчитать номинальный ток заряда довольно просто. Для этого необходимо знать емкость АКБ, а зарядный ток должен составлять одну десятую от номинальной емкости батареи.
Технологии зарядки АКБ
Для батареи емкостью 60 а/ч ток зарядки составит, соответственно, 6 А и при достижении этого параметра можно считать зарядку завершенной. В процессе зарядки напряжение постоянно растет, а ток падает. Постоянный показатель силы тока для нашего аккумулятора в 6 ампер на протяжение 2 часов будет говорить о том, что зарядка прошла успешно.
Очень важно при этом контролировать силу тока во время зарядки, потому что после 20-26 часов работы при слишком высоком токе, электролит закипит и банки аккумулятора попросту замкнут накоротко. Спасти такой аккумулятор практически невозможно. Здоровый аккумулятор должен заряжаться не более 15-17 часов при соблюдении оптимальных параметров зарядки.
В некоторых случаях можно проводить заряд аккумулятора малым током. Это нужно для того, чтобы выровнять показатель плотности в каждой из банок. Особенно это касается батарей необслуживаемого типа. Если показатель плотности низкий и составляет около 1,2 — 1,3, причем в разных банках, то установив малый ток в пределах 2 ампер, после 40-часового цикла зарядки плотность электролита в банках восстановится. Таким методом заряжают аккумуляторы, которые разряжены полностью. К примеру, после многократных попытках пуска двигателя в холодное время года, рекомендуют именно такой метод зарядки, причем нельзя пропустить момент, когда пластины начнут сульфатироваться. Ток заряда для гелевых аккумуляторов и ток заряда для литий-ионных батарей определено строго в соответствии с их характеристиками и они заряжаются только специальными ЗУ.
Особенности зарядки постоянным и переменным током
При работе с электролитом следует помнить, что ни в коем случае нельзя при зарядке доливать в банки электролит. Для долива используется только дистиллированная вода. Необслуживаемые АКБ, которых сегодня подавляющее большинство, заряжаются автоматическими импульсными зарядными устройствами.
Технология зарядки АКБ по двум методам не представляет собой ничего сверхъестественного. Если заряжать АКБ постоянным напряжением, достаточно выставить уровень силы тока на величину одной десятой от емкости и запустить процесс зарядки. По мере зарядки ток будет падать, когда он упадет полностью, а это может занять до 10-15 часов, АКБ полностью восстановил свой заряд.
Зарядка переменным током несколько сложнее, но тоже в ней нет ничего архисложного. Вся сложность состоит в том, чтобы следить за напряжением на клеммах аккумулятора. Точно так же, как и в первом случае, показатель силы тока устанавливается на отметку 10% от емкости, после чего заряд проводится до тех пор, пока напряжение на клеммах не вырастет до 14 вольт. Как только это параметр достигнут, ток уменьшается вдвое, батарея заряжается до показателя 15 В.
После этого в третий раз ток уменьшается вдвое, а после стабилизации напряжения на клеммах в течение нескольких часов, зарядку можно считать завершенной. Не разряжайте аккумуляторы до предела и удачных всем дорог!
Источник
Восстановление кислотных аккумуляторов переменным током
Напряжение электросети переменного тока представляет собой осциллограмму в виде синусоиды с положительными и отрицательными полупериодами.
При зарядке аккумуляторов используется положительная часть синусоиды в однополупериодных и двухполупериодных выпрямителях постоянного тока.
Ускорить процесс восстановления пластин аккумулятора без ухудшения состояния возможно, если использовать дополнительно отрицательный полупериод тока небольшой мощности.
Ввиду низкой скорости химического процесса в электролите не все электроны достигают кристаллов сульфата свинца за отведенное время в десять миллисекунд, к тому же исходя из формы синусоиды напряжение в начале равно нулю, а затем растет и достигает максимума через пять миллисекунд, в последующие 5 мс оно падает и переходит через нуль в отрицательный полупериод синусоиды. Электроны средней части синусоиды обладают наибольшим энергетическим потенциалом и в состоянии расплавить кристалл сульфата свинца с переводом его в аморфное состояние. Электроны остальной части синусоиды, имея недостаточную энергию, не достигают поверхности пластин аккумулятора, или неэффективно воздействуют на их восстановление. Накапливаясь в молекулярных соединениях на поверхности пластин, они’ препятствуют восстановлению, переводя химический процесс в электролиз воды.
Отрицательный полупериод синусоиды «отводит» электроны от поверхности пластин на исходные позиции с суммарной энергией, неиспользованной при первоначальной попытке расплавления кристалла сульфата свинца и энергии возврата. Идет раскачивание энергетической мощности с ее ростом, что в конечном результате позволяет расплавить нерастворимые кристаллы.
Значение амплитуды напряжения отрицательного полупериода не превышает 1 /10. 1 /20 от тока эаря-да и является достаточной для возврата электронов перед следующим циклом подачи положительного импульса, направленного на расплавление кристалла сульфата свинца. При таком токе отсутствует вероятность переполюсовки пластин аккумулятора при отрицательной полярности.
В практике используется несколько технологий восстановления, в зависимости от технического состояния аккумуляторов и условий предшествующей эксплуатации. Техническое состояние можно определить с помощью диагностического прибора или простой нагрузочной вилкой, при высоком внутреннем сопротивлении напряжение под нагрузкой заметно ниже,’ чем без нее — это означает, что поверхность пластин и внутренняя губчатая структура покрыты кристаллами сульфата свинца, который препятствует току разряда.
Характеристика устройства Напряжение электросети, В | 220 |
Напряжение аккумуляторов, В | 12 |
Емкость аккумуляторов, А*ч | 2. 90 |
Вторичное напряжение, В | 2*18 |
Мощность трансформатора, Вт | 120 |
Зарядный ток, А | 0. 5 |
Импульс тока, А | до 50 |
Мощность импульса, Вт | до 1000 |
Разрядный ток, А | 0,25 |
Время заряда при восстановлении, мс | 1. 5 |
Время разряда, мс | 10 |
Время восстановления, ч | 5. 7 |
Ранее используемые технологии восстановления имеют положительные и отрицательные качества: длительное время восстановления, большое энергопотребление, работа с кислотой, большие выделения газа, в состав которого входит взрывчатая смесь водорода с кислородом, необходимость мощной принудительной вентиляции и средств защиты при переливании кислоты при восстановительных работах. Положительным является конечный результат.
Технология восстановления atf-кумуляторов длительным зарядом малым током была разработана в прошлом веке и применялась при незначительной сульфатации электродов, заряд проводился до начала газообразования, ток снижался ступенчато с небольшими перерывами. Такой метод и сейчас используется для восстановления пластин мощных промышленных аккумуляторов на низкое напряжение и ток до десятков тысяч ампер. Время восстановления составляет не менее пятнадцати суток.
Второй метод представляет собой восстановление пластин в дистиллированной воде, он также длителен по времени и связан с заменой кислоты на воду с последующим зарядом, как в первом варианте. По окончании восстановления плотность выравнивается добавкой электролита.
Возможно восстановление пластин кратковременной подачей большого зарядного тока в течении 1. 3 ч. Недостаток такого метода состоит в резком сокращении срока эксплуатации аккумулятора, чрезмерном нагреве пластин и их коробление, повышенном саморазряде, обильном газовыделении кислорода и водорода.
Технология восстановления свинцовых аккумуляторов переменным током позволяет в кратчайшее время снизить внутреннее сопротивление до заводского значения, при незначительном нагреве электролита.
Положительный полупериод тока используется полностью при зарядке аккумуляторов с незначительной рабочей сульфатацией, когда мощности зарядного импульса тока достаточно для восстановления пластин.
При восстановлении аккумуляторов с длительным послегарантийным сроком необходимо использовать оба полупериода тока в соизмеримых величинах: при токе заряда в 0,05С (С — емкость), ток разряда рекомендуется в пределах 1/10. 1/20 оттока заряда. Интервал времени тока заряда не должен превышать 5 мс, то есть восстановление должно идти на максимально высоком уровне напряжения положительной синусоиды, при которой энергии импульса достаточно для перевода сульфата свинца в аморфное состояние. Освободившийся кислотный остаток SO4 повышает плотность электролита до тех пор, пока все кристаллы сульфата свинца не будут восстановлены и повышение плотности закончится, при этом из-за возникшего электролиза напряжение на аккумуляторе возрастет. При зарядно-восстановитель-ных работах необходимо использовать максимальную амплитуду тока при минимальном времени его действия. Крутой передний фронт импульса тока заряда свободно расплавляет кристаллы сульфата, когда другие методы не дают положительных результатов. Время между зарядом и разрядом дополнительно используется на охлаждение пластин и рекомбинацию электронов в электролите. Плавное снижение тока во второй половине синусоиды создает условия для торможения электронов в конце зарядного времени с дальнейшим реверсом при, переходе тока в отрицательный полупериод синусоиды через нуль.
Для создания условий восстановления применена тиристорно-диодная схема установки и регулирования тока синхронизированного с частотой электросети. Тиристор во время переключения позволяет создать крутой передний фронт тока и меньше подвержен нагреву во время работы, чем транзисторный вариант. Синхронизация импульса зарядного тока с электросетью снижает уровень помех, создаваемых устройством.
Момент повышения напряжения на аккумуляторе контролируется введением в схему отрицательной обратной связи по напряжению, с аккумулятора на ждущий мультивибратор на аналоговом таймере DA1 (рис. 1).
Также в схему введен температурный датчик для защиты от перегрева силовых компонентов. Регулятор тока заряда позволяет установить начальный ток восстановления, исходя из значения емкости аккумулятора.
Контроль среднего тока заряда ведется по гальваническому прибору — амперметру с линейной шкалой и внутренним шунтом. В показаниях амперметра токи алгебраически суммируются, поэтому показания среднего зарядного тока с учетом одновременной подачи с положительного тока отрицательного полупериода будут занижены.
Не следует продолжительное время подавать на аккумулятор только отрицательный полу пери од тока — это приведет к разряду аккумулятора с переполюсовкой пластин.
В заряженном аккумуляторе всегда идет саморазряд из-за разной плотности верхнего и нижнего уровня электролита в банке и других факторов, нахождение в буферном режиме подзарядки поддерживает аккумулятор в рабочем состоянии.
Схема восстановления аккумуляторов переменным током (рис. 1) содержит небольшое количество радиодеталей.
В состав схемы входит ждущий мультивибратор — формирователь синхронизированных с электросетью импульсов на аналоговом таймере DA1 типа КР1006ВИ1, усилитель амплитуды импульса на биполярном транзисторе обратной проводимости VT1, датчик температуры и усилитель напряжения отрицательной обратной связи VT2, узел питания и тиристорный регулятор зарядного тока. Напряжение синхронизации снимается с двухполупе-риодного выпрямителя на диодах VD3, VD4 и подается через делитель напряжения R13, R14 на вход 2 нижнего компаратора микросхемы DA1.
Частота импульсов ждущего мультивибратора зависит от номиналов резисторов R1, R2 и конденсатора С1.
В исходном состоянии на выходе 3 DA1 имеется высокий уровень напряжения при отсутствии на входе 2 DA1 напряжения выше1/3Uп, после его появления микросхема срабатывает с порогом, установленным резистором R14, на выходе появляется импульс с периодом 10 мс и длительностью, зависящей от положения регулятора R2, — времени заряда конденсатора С1. Резистор R1 определяет минимальную длительность выходных импульсов.
Вывод 5 микросхемы имеет прямой доступ к точке 2/3Un внутреннего делителя напряжения. По мере роста напряжения на аккумуляторе в конце заряда открывается транзистор VT2 цепи отрицательной обратной связи и снижает напряжение на выводе 5 DA1, создается модификация схемы и длительность импульса уменьшается, время нахождения тиристора в открытом состоянии снижается. Импульс с выхода 3 таймера через резистор R5 поступает на вход усилителя на.транзис-торе VT1. Усиленный транзистором VT1 импульс через оптопару U1 подает на управляющий электрод тиристора VS1 отпирающее напряжение, синхронизированное с сетью, тиристор открывается и подает в цепь аккумулятора импульс двухпо^-лупериодного зарядногатока с длительностью, зависящей от положения регулятора тока R2. Резисторы R9, R10 защищают оптопару от перегрузок.
Температура силовых элементов контролируется с помощью тер-морезистора R11, установленного в делителе напряжения цепи отрицательной обратной связи.
Повышение температуры вызывает снижение сопротивления терморезистора и шунтирование транзистором VT2 вывода 5 DA1, длительность импульса сокращается — ток снижается.
Питание таймера и RC-цепи в схеме стабилизировано стабилитроном VD1.
Электронная схема питается от вторичной обмотки силового трансформатора через диоды VD2. VD4, пульсации сглаживаются конденсатором СЗ. Диод VD2 разделяет пульсирующее напряжение выпрямителя на диодах VD3, VD4 от напряжения питания таймера и усилителя на транзисторе VT1.
Тиристор питается двухполупе-риодным пульсирующим напряжением и исполняет роль ключа с регулируемым временем включения положительных импульсов тока, отрицательный импульс подается в аккумулятор с однополупериодного выпрямителя на диоде VD5.
Радиодетали в схеме установлены общего применения: микросхема таймера серии 555, 7555. Резисторы МЛТ 0,12, R15 — мощностью 5 Вт. Переменные резисторы типа СП. Трансформатор можно использовать типа ТПП 2*18 В/5 А. Диоды малогабаритные на ток до 5 А. Тиристор при емкости аккумулятора до 50 А*ч подойдет типа КУ202Б. Н с радиатором.
Регулировку схемы устройства начинают с проверки напряжения +18 В, небольшие расхождения не влияют на работу прибора.
Временно установив параллельно конденсатору С1 емкость в 0,1 мкФ, по вспышкам светодиода уточняют работоспособность таймера.
В цепь катода тиристора для контроля его работы включают лампочку на напряжение 12 В и мощность 50. 60 Вт. Мигание лампочки подтверждает исправность тиристора и его работу в допустимом тепловом режиме. Вращением вала установочного резистора R14 уста-навливают порог срабатывания микросхемы. После подключения в зарядную цепь аккумулятора необходимо выставить зарядный ток резистором R2 при среднем положении подстроечного резистора R12. При нагреве терморезистора R11 ток заряда должен уменьшится.
Элементы схемы, кроме выключателя, регулятора тока заряда, амперметра и предохранителя устанавливаются на печатной плате (рис. 2), остальное крепится в корпусе зарядного устройства.
Технология восстановления аккумуляторов переменным током была разработана в 1999 г. и выполнена в изделии небольшой партией для патентного эксперимента.
- И.П. Шелестов «Радиолюбителям — полезные схемы». Солон-Пресс. Москва. 2003 г.
- В. Коновалов. «Зарядно-восста- • новительное устройство для Ni-Cd аккумуляторов». — «Радио», №3/2006, стр. 53.
- В. Коновалов. «Измеритель Rbh АБ». — «Радиомир», №8/2004, стр. 14.
- В. Коновалов., А. Разгильдеев. «Восстановление аккумуляторов». -«Радиомир», №3/2005, стр. 7.
- В. Коновалов. «Пульсирующее зарядно — восстановительное устройство». — «Радиолюбитель», №5/2007, стр. 30.
Автор: Владимир Коновалов г. Иркутск-43, а/я 380
Рекомендуем к данному материалу .
Мнения читателей
Автор пишет: «Не следует продолжительное время подавать на аккумулятор только отрицательный полу пери од тока — это приведет к разряду аккумулятора с переполюсовкой пластин».Отрицательного полупериода в этой схеме не может быть, так как выпрямитель двухполупериодный. Если применить однополупериодный выпрямитель (один диод), то может быть и заработает.
Василий / 02.03.2016 — 19:54
Схема полурабочая.Регулировка R14 -открыт один полупериод,напряжение 13в,еле регулирует ток R2,крутнёш -открылись два полупериода,напряж.16-17в,ток большой и не регулируется.По схеме:напряж.18в после диодов, а после VD2 +25в.Изменения:вместо АОУ103, поставил АОТ110,R9=750ом,VT1 608,раскачать оптрон этого достаточно.А VT2 поставил3102,потому что 315 не перекрывает диапазон усиления для ВИ1,чтобы уменьшить длительность импульса при напряж.на аккум-ре при 16в и увеличить импульс с 10.5вВ общем недоработка есть .
DAX / 16.11.2015 — 16:51
На неполных 100% уверен, что это обрыв банки. Условия для этого были созданы и результат. При хорошей зарядке — обрыв может жужжать (в тишине). К примеру, на батареях 7А/ч (герметичные, электролит в консистенции — «гель») — частое явления. Но там написано на корпусе допустимый ток разряда, боится К.З. И симптомы ЭТИ же.Батареи прошлых лет, со свинцовыми перемычками сверху (достаточного сечения для насилования Батареи)лишены были этой болезни, почти. Если стартер стоит, то для Батареи это К.З., двинулся — допустимая нагрузка.
Игнат / 14.02.2015 — 04:30
Аккумулятор Panasonic-95Ah, брал в Японии. С новья 2 года работал без вопросов. Этой зимой пришлось покрутить стартером на морозе.. и аккум внезапно умер. Он не то, что стартер провернуть, лампочка на 50Вт разряжает его до 10В за 5 минут. Хотя без нагрузки заряд держит 12.4 неделями. Вскрытие пробочек, найденных под наклейкой, позволило увидеть чистый электролит, аккуратные пластины серенькие, плотность около 30 во всех банках. Что такое с ним могло случиться? Это устройство поможет вернуть его к жизни? 400 баксов как -никак
Vasilisa / 30.09.2013 — 14:08
Очень интересная статья. Добавляю в в избранное.Vasilisa http://test-page.ru/
Диня / 23.04.2013 — 21:03
Всем приве! Хочу поделится своим опытом востоновления АКБ типа-(CSB 12V 7Ah. Вобшем берём АКБ вскрываем крышечи или(пробки)зоглядываем в отверстия (горловинки)там все сухо! Всё верно так и должно быть потомучно он гелевый, вобшем продолжаем востоновление! Берём обычный «ЩЁЛОЧ» (используется для щелочных АКБ, шахтёрских фанарей или для фанарей жд путейцев итд). Вобшем берём щёлоч гдето около 50-60мл и разлеваем по банкам равными долями гдето около 10мл на банку желательно по горловину! (ВНИМАНИЕ! ВЕСЬ ПРОЦЕС ПРОИЗВОДИТСЯ НА СВЕЖЕМ ВОЗДУХЕ И ПОД ОТКРЫТЫМ НЕБОМ. БУДТЕ ВНИМАТЕЛЬНЫ И ОСТОРОЖНЫ! ВСЕ ДЕЙСТВИЯ ПРОИЗВОДИТЕ В ОЧКАХ (ОЧКИ-ЛЮБЫЕ) ПРИ ЗАПРАВКЕ БАНОК АКБ ИСПОЛЬЗУЙТЕ ШПРИЦ С УДЛЕНИТЕЛЬНЫМ НАКОНЕЧНИКОМ (ВМЕСТО ИГЛЫ ОТ ШПРИЦА ИСПОЛЬЗУЕТСЯ ТРУБКА «ПХВ» ОКОЛО 10см).После завершоного процесса ставим АКБ на подзоряку 12вол смотрим показания «АМПЕРМЕТРА» если нагрузка 0-нулевая то поднемаем напряжения до 20-22волт или мощьность до поднятия нагрузке на «АМПЕРМЕТРЕ» (Взовисемости от зарядного устройства)Нагрузка появилась на «АМПЕРМЕТРЕ» доводим АКБ до лёгкого закипания затем снежаем нагрузку до 12-13вольт и остовляем на сутки. После отключаем АКБ от зарядки и даём немного отстоятся около 2-двух часов после проверяем лампой накала на 12воль на наличие электро энергий если всё нормально горит то проверяем на ногрузку. После востоновления берём тоджешприц и выкачеваем из банок оставшыйся ЩЁЛОЧ досуха, заливаем дистилировку и ставимна разрядку до 9-10вольт выкачеваем воду и золиваем свежей дистилировки и ставим на подзарядку(МИНИМАЛЬНУЮ) после чего выкачиваем воду и закрываем пробкоми! ПОВТОРЮСЬ ВСЕ ОПЕРАЦЫЙ ПРОИЗВОДИЛИСЬ НА УЛИЦЕ! Срок службы после востоновления около 2-2.5лет.
фаза / 11.04.2013 — 18:14
Вантеев и Коновалов вроде мысли излогают правильно,но как начну повторять их схемы,то ни одна, без переделки, не хочет работать, много ошибок. Непорядочно это.
Владимир 3 / 04.03.2013 — 07:59
Очень содержательная беседа! Особенно полностью согласен с высказываниями о публикациях тески Коновалова Я исам из за своей доверчивости уже не раз обжигался на Его \»Творениях\» с уважением В,В,Т!
аккумулятор / 09.02.2013 — 19:23
все полная тупость! мы не в нии-мы обычные люди!
Алексей / 06.02.2013 — 13:59
евгений / 04.12.2012 20:30Г-н Коновалов, как показывает удручающая практика повторения его схем, такой-же наперсточник, как Кашкаров А. они сочиняют схемы на коленке, даже не макетируют. У Кашкарова я не встретил в статьях ни одного чертежа печатных плат его творений. С ним уже ведут борьбу Е. Яковлев из Украины, сайт radio-hobby.org, радиоежегодник 2012-2. Но у этого графомана фантастическая плодовитость-более 900(!) публикаций, штук 30 книг и нет ни одного журнала в СНГ где бы не печатались эти господа, от украинского Электрика до Юного Техника. А скольким начинающим радиолюбителям они отбили тягу к технике. Господа я подписываюсь под каждым словом Евгения . Но обрадую Вас . В.Коновалов А. Разгильдеев А. Вантеев \»спецы\»Лаборатории \»Автоматика и телемеханика\» на Булавина г. Иркутска в Журнале \»Радиомир\» N 6 2012 стр 14 опубликовали \»новую супер схему\» по теме \»Восстановление свинцовых аккумуляторов\». Загляденье и фото и печатка и спмсок литературы. Даже в разводке дорожек двух транзисторовошиблись ,а вы хотите чтобы схема работала. Список литературы слямзали от предыдущкй статьи — не глядя и оказалось ,что Шелестов в книге 5 стр. 105 описывает применение таймера 555 который здесь не применяется. Я давно слежу за их публикациями и попытки повторять их пытался. Евгений прав — даже на коленке не собирают . Одна фамилия чего стоит — Разгильдеев.
Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:
Источник