Печатная плата солнечной батареи

Печатная плата солнечной батареи

Зарядка аккумуляторов от солнечной батареи

Автор: SSMix
Опубликовано 17.09.2013
Создано при помощи КотоРед.
Участник Конкурса «Поздравь Кота по-человечески 2013!»

Как-то для дежурной подзарядки 3-х пальчиковых NiMH аккумуляторов были недорого приобретены 3 солнечные батареи из поликристаллического кремния типа YH40*40-4A/B40-P размерами 40×40 мм каждая. В datasheet на них был указан ток Iкз = 44 мА и напряжениеUхх = 2,4 В. Также было указано, что в отличие от монокристаллического кремния, данные элементы незначительно снижают мощность при облачности или частичном затенении. Соединив последовательно три этих солнечных элемента и через диод Шоттки подав на последовательно соединённые три NiMH аккумулятора, было получено простейшее зарядное устройство. Простейшее, поскольку при такой схеме включения зарядка аккумуляторов происходила лишь при ярком солнечном свете. В пасмурную погоду и при искусственном освещении выходное напряжение солнечных элементов значительно падало, в результате чего не хватало напряжения для зарядки.

Сперва к солнечной батарее был просто добавлен импульсный повышающий преобразователь 5В на NCP1450ASN50T1G со стандартной обвязкой,

но результат оказался неудовлетворительный.

После запуска преобразователя напряжение на выходе солнечной батареи значительно просаживалось, и даже при хорошем солнечном освещении не превышало 2В. Ток зарядки аккумуляторов при этом был в несколько раз ниже, чем при непосредственном подключении к ним солнечной батареи. Подключение вывода разрешения работы 1 (CE) DA1 через делитель напряжения для увеличения порога запуска преобразователя также не дало существенного улучшения ситуации. Стало ясно, что при слабом освещении режим работы схемы должен быть совсем другим. Сперва нужно накопить заряд от солнечных элементов на дополнительном конденсаторе, а затем по достижению на нём определённого порогового напряжения «выплеснуть» этот заряд на повышающий преобразователь. При ярком освещении, когда напряжения на выходе солнечной батареи достаточно для непосредственной зарядки аккумуляторов, повышающий преобразователь должен автоматически отключаться. В итоге была разработана следующая схема, обеспечивающая автоматический переход из одного в другой режимы работы:

Читайте также:  Солнечные батареи способ применения

Работает устройство следующим образом. При первоначальном включении (освещении) все транзисторы закрыты и происходит заряд конденсатора C1, подключенного параллельно солнечной батарее. Напряжение с C1 через дроссель L1 и диод Шоттки VD3 также поступает на вход питания микросхемы повышающего преобразователя DA1 NCP1450ASN50T1G, на конденсатор C4 и на положительный вывод батареи аккумуляторов GB1. Отрицательный вывод GB1 подсоединён к общей шине схемы через диод VD4 для исключения тока разрядки аккумуляторов через схему при отсутствии внешнего освещения. По достижению на конденсаторе C1 порогового напряжения открывания VT3 (около 1,8В) последний открывает также и транзистор VT4. При этом на управляющий вход CE DA1 подаётся отпирающее напряжение (>0,9В) и запускается импульсный повышающий преобразователь (DA1, R10, C3, VT5, L1, VD3, C4), подзаряжая конденсатор C4. Одновременно с работой преобразователя начинает светиться красный светодиод HL2. Если освещения солнечной батареи недостаточно для поддержания рабочего тока нагрузки, напряжение на конденсаторе C1 будет снижаться, VT3, VT4 закроются, управляющее напряжение на выводе CE DA1 упадёт ниже 0,3 В и преобразователь выключится, а светодиод HL2 погаснет. Поскольку нагрузка для солнечной батареи отключилась, вновь запустится процесс зарядки конденсатора C1 до порогового напряжения открывания VT3. Опять запустится преобразователь и в конденсатор C4 поступит очередная порция заряда. После серии таких циклов напряжение на C4 возрастёт до напряжения открывания VD4 плюс суммарное напряжение на аккумуляторах. Через GB1, VD4 потечет ток зарядки аккумуляторов. Тока в несколько мА будет достаточно для падения напряжения на VD4, при котором начнёт открываться транзистор VT2. Диод VD4 используется при этом в качестве датчика тока. Пульсирующее напряжение с солнечной батареи и C1 подаётся на выпрямитель VD1 (BAS70), C2, R1. С резистора R1 выпрямленное напряжение подаётся на последовательно включенные З-И VT1 и К-Э VT2. Если вырабатываемой солнечной батареей энергии становится достаточно для одновременного открывания VT1 (напряжением на C2, R1) и VT2 (током зарядки аккумуляторов), то будет происходить шунтирование нижнего плеча делителя R4, что приведет к повышению порога открывания VT3, VT4 для запуска повышающего преобразователя. Таким образом, чем больше энергии вырабатывается солнечной батареей, тем больше становится порог запуска преобразователя, т.е. с накопительного конденсатора C1 снимается всё больший заряд энергии. При достаточном освещении, когда напряжения солнечной батареи под нагрузкой хватает для непосредственной зарядки трёх аккумуляторов (через L1, VD3, VD4), открытые VT1, VT2 шунтируют R4 настолько, что повышающий преобразователь находится в выключенном состоянии. При этом красный светодиод HL2 перестаёт мигать. Зелёный светодиод HL1 светится постоянно при напряжении на C1 более 2В для индикации работоспособности устройства. Процесс автоматического переключения режима работы происходит плавно, адаптируясь под внешнее освещение. При слабом освещении наблюдаются редкие мигания красного светодиода. С возрастанием освещённости частота мигания повышается, а также начинает в противофазе мигать зелёный светодиод. При дальнейшем повышении освещённости, когда в повышающем преобразователе надобность отпадает, остаётся гореть только зелёный светодиод. В ясную солнечную погоду ток зарядки аккумуляторов достигает 25 мА. Для ограничения выходного напряжения солнечной батареи на уровне 5,5 В предназначен стабилитрон VD2, поскольку по datasheet на NCP1450A максимальное входное напряжение для неё не должно превышать 6 В.

Устройство собрано на печатной плате из одностороннего фольгированного стеклотекстолита размерами 132х24мм.

Все элементы, за исключением разъёма питания для подключения аккумуляторов, в SMD исполнении. Светодиоды HL1, HL2 – ультра яркие типоразмера 1206. Тип приобретённых светодиодов остался неизвестен, но они довольно яркие, а светиться начинают уже при микроамперных токах. Резисторы и керамические конденсаторы – типоразмера 0805 (C3 и R10 – 0603, но можно запаять и 0805 в два этажа). Конденсаторы C1, C4 – танталовые, типоразмера C. Дроссель L1 – типа CDRH6D28 на 15мкГн, 1,4А. Транзисторы применены широко распространённые, корпус SOT-23-3. Разъём питания – стандартный. Внимание! Плата разведена для наружного плюсового контакта штекера.

Настройка устройства практически не требуется. При необходимости подбором сопротивления резисторов R2, R7 можно установить требуемую яркость свечения имеющихся светодиодов. Подбором резистора R4 можно добиться наиболее оптимального режима работы преобразователя (по максимуму КПД) при пониженной яркости освещения.

Источник

Простой контроллер для солнечной батареи

На этот раз я решил сделать автомат, который автоматически включает светодиодное освещение в садовой беседке. Поскольку поблизости нет розетки, а постоянное протягивание удлинителя достаточно утомительное занятие, я решил запитать светодиоды от аккумулятора с подзарядкой от солнечных элементов.

Ранее был описан очень похожий драйвер на солнечных элементах, который освещает стеклянную полку в шкафу. Используя этот драйвер, возникла бы проблема, поскольку для освещения беседки нам нужно больше света, чем для освещения стеклянной полки. Так же, применение более мощного источника света будет быстрее разряжать аккумулятор, который может выйти из строя в результате глубокой разрядки элементов в батарее.

Чтобы этого не допустить, я решил создать простой драйвер с защитой от слишком глубокого разряда батареи на основе регулируемого стабилитрона TL431. В свою очередь, солнечные элементы также служат в качестве датчика освещенности, что значительно упростило всю схему.

Печатная плата имеет размеры 40мм на 45мм. Кроме того, добавлены два монтажных отверстия. Все устройство питается от трех Ni-MH аккумуляторов (1,2В/1000мАч). Для зарядки используется солнечная батарея с номинальным напряжением 5 вольт и максимальным выходным током до 80 мА. Солнечная батарея заряжает аккумуляторы через выпрямительный диод D1. Схема не имеет защиты от перезаряда батареи из-за того, что в такой конфигурации перезарядка просто невозможна.

Полностью заряженный аккумулятор должен иметь напряжение около 4,2-4,35 В Солнечная батарея вырабатывает напряжение 5В, но происходит падение на выпрямительном диоде в районе 0,7 В, что дает нам напряжение 4,3 В. Транзистор Q1 отвечает за включение освещения в ночное время и отключение его днем. База этого транзистора подключена через резистор 2,2 кОм к положительному полюсу солнечной батареи.

Когда солнечная батарея не вырабатывает электроэнергию, или она слишком маленькая, транзистор Q1 заперт. Тогда ток с вывода («REF») стабилитрона TL431 будет течь только через резистор R4, который создает делитель напряжения вместе с резисторами R2 и R3. Транзистор Q2 управляет нагрузкой в виде светодиодов. Чтобы схема работала правильно, мы не можем игнорировать резистор R5, задачей которого является подтягивание базы транзистора Q2 к плюсу источника питания.

По расчетам для имеющегося напряжения выходит, что резистор должен иметь сопротивление 100 Ом. С таким сопротивлением схема переключается очень быстро. Но проблема состоит в том, что этот резистор имеет достаточно маленькое значение, и через него течет очень большой ток. Общий ток потребления составляет около 23 мА! Я решил этот резистор заменить на резистор большего значения. В итоге я поставил резистор номиналом 1 кОм. Теперь отключение нагрузки не такое быстрое, но ток потребления сократился до 8mA.

Конечно, текущее значения 8 мА потребляется только тогда, когда солнечная батарея находится в темном месте — то есть, только в ночное время, когда горят светодиоды. И это такой же максимальный ток (8 мА), который поступает от батареи при напряжении 4,2 В. Напряжение отключения нагрузки я поставил на 2,9 В. Предельное напряжение для одной ячейки 0,9 В, что при подключении последовательно трех дает нам 2,7 В, и следовательно, у нас есть еще в запасе 0,2 В.

Схема после отключения нагрузки (т.е. при 2,9 В и ниже), потребляет только 50 мкА. Такой же ток будет, когда солнечная батарея заряжает аккумуляторы. Устройство очень отзывчиво на свет, но не на столько, чтобы уличное освещение мешало бы определить сумерки. С момента обнаружения заката до включения светодиодов на 100% проходит примерно 2 мин.

Удалив из системы транзистор Q1, резистор R1 и выпрямительный диод D1 получаем простую схему защиты аккумулятора от глубокого разряда. Подобная схема может использоваться для отключения Li-Ion или Li-Pol аккумулятора от зарядки. Ее можно использовать, например, в фонарике. Существует также возможность создания подобной защиты и на другие напряжения, для этого нужно рассчитать делитель напряжения. Формулы и пример расчета есть здесь.

Перечень деталей:

  • резисторы: 3×1к, 2,2к, 15к. 100к
  • транзисторы: BC547, BC327 (или аналогичные)
  • стабилитрон TL431
  • диод 1N4007 (или аналогичный)
  • конденсатор 100мкФ

Скачать рисунок печатной платы (1,4 MiB, скачано: 1 480)

Источник

Простая самодельная солнечная батарея

Начитавшись в безграничных просторах интернета про самодельные солнечные элементы, я решил провести свои «эксперименты» в этой области. Я расскажу вам о самом простом способе изготовления солнечных батарей своими руками.

Для начала я решил определиться с элементной базой. Для солнечного элемента нам надо P-N переходы. Они есть в диодах и транзисторах. Решено было выбрать кремниевые транзисторы КТ801. Они выпускались в металлическом корпусе и поэтому их можно открыть не портя кристалл. Достаточно надавить пассатижами на крышку и она отломается.

Теперь разберёмся в параметрах. При среднем дневном освещении, каждый наш транзистор выдаёт 0.53В (База — плюс, а Коллектор и Эмиттер — минусы). А дальше идёт один нюанс. Транзисторы 1972 года выпуска имеет большой белый кристалл, и выдают около 1.1мА. Транзисторы с 1973 по 1980гг. выпуска имеют большой кристалл с зелёным покрытием, и выдают около 0.9мА. Транзисторы выпускаемые позже имеют маленькие кристаллы и выдают всего 0.13мА.

Для эксперимента я использовал батарею из двух параллельных цепочек по 4 транзистора. Под нагрузкой она выдавала около 1.8В, 2-2.5мА. Это довольно скромные параметры, зато как говорится «на халяву». Питать такой батарейкой можно китайские наручные часы, или зарядить аккумулятор и питать светодиод, жучок и др.

Для удобства крепления и измерений можно закрепить транзисторы на печатной плате как на рисунке ниже. Моё устройство выполнено навесным монтажом, так как это ускоряет сборку.

Источник

МОЩНАЯ САМОДЕЛЬНАЯ СОЛНЕЧНАЯ БАТАРЕЯ

В общем от диодной солнечной панели я желал получить номинальное напряжение при нормальном солнечном освещении 9 вольт, напряжение при облачной погоде не менее 6 вольт, а при ярком солнечном освещении планировалось получить до 14-16 вольт напряжения, про силу тока поговорим потом. Итак, поскольку пиковое значение напряжение в 0,7 вольт мои кристаллы отдавали очень редко (в течении 3-х дней испытании на солнце мультиметр только один раз показал такое значение от одного кристалла), то решил для удобства проведения расчетов использовать расчетную величину тока одного кристалла 0,5 вольт. Для получения 12 вольт напряжения нужно последовательно соединить 24 кристалла полупроводниковых диодов. Теперь поясню, как достать кристалл из диода. Берем сам диод и при помощи молотка разбиваем стеклянный держатель верxнего контакта диода. Затем при помощи плоскогубцев нужно открыть диод. Там мы увидим кристалл, который припаян к основании диода. К кристаллу припаян медный многожильный провод на конце которого прикреплен верxний контакт диода. Берем нижнее основание диода на который припаян кристалл и идем к газовой плите. Держим его при помощи плоскогубцев на огне (так, что полупроводниковый кристалл наxодился сверxу). Через пол-минуты олово кристалла расплавится и уже можно спокойно взять его при помощи пинцета. Так нужно делать со всеми диодами. У меня на это ушло пару дней. Работа действительно трудная, но дело стоит того. Как уже было сказано, каждый полупроводный кристалл способен отдавать до 7 миллиампер тока на ярком солнце. Для удобства расчета использовал значение силы тока одного кристалла 5 миллиампер. То есть, если параллельно соединить 32 кристалла мы получим силу тока 160 миллиампер, почему именно 160 миллиампер? Просто у меня диодов xватило как раз только для получения такого тока. Нужно подключить 24 диода последовательно для получения 12 вольт напряжения и собрать 32 блока по 12 вольт и включить параллельно для получения желаемой емкости. В итоге когда панель была готова (после почти недели работ) я почему то получил иные параметры которые меня очень обрадовали. Максимальное напряжение при ярком солнечном освещении до 18 вольт, а сила тока достигала 200 миллиампер, иногда до 220 миллиампер.

Для корпуса панели были использованы два каркаса от советского стабилизатора напряжения. На стабилизаторе есть отверстия для вентиляции и именно в ниx были поставлены полупроводные кристаллы.

Поскольку солнечный свет не всегда будет освещать нашу панель, то было решено зарезервировать напряжение от панели в аккумулятораx. Аккумуляторы были использованы от китайскиx фонариков. Каждый аккумулятор имеет следующие параметры: напряжение 4 вольт, емкость до 1500 миллиампер.

То есть наша панель за сутки успеет зарядить такой аккумулятор, точнее три такиx аккумулятора, поскольку аккумуляторы были включены последовательно для получения 12 вольт напряжения, потом переделал панель и она также при желании могла отдавать 8 вольт 300 миллиампер. Также была изготовлена небольшая панель из стеклодиодов. Стеклодиод при ярком солнечном освещении отдавал напряжение до 0,3 вольт, а сила тока до 0,2 миллиампер.

Стеклодиодная панель у меня дает напряжение 4 вольта, сила тока до 80 миллиампер. Все напряжение от солнечныx панелей накапливалось в свинцовыx аккумулятораx от фонарей, однако желательно использовать аккумулятор с большой емкостью, даже и от автомобиля. Все напряжение от аккумуляторов тратилось с одной целью — осветить дом в ночное время. Освещение выполнялось светодиодами.

Для этого из магазина были куплены светодиодные китайские фонарики. Затем были созданы светодиодные панельки.

На каждой панельке 42 светодиода. В общей сложности были созданы три идентичные панели которые вместе потребляли всего 20 ватт. Но освещенность равна 100 ваттной лампе накаливания и даже больше.

Свет, которые дают светодиоды, более приятный и успокаивающий. К тому же светодиоды имеют ничтожные тепловые потери.

Ну в прочем думаю все отлично знают, что светодиоды более эффективны. Все светодиоды были подключены параллельно и питаются от 4-х вольт напряжения, но напряжение нужно подать через токоограничивающий резистор 10 ом — мощность резистора 1 ватт, и нагрева резистора не наблюдалась. Ака.

Форум по обсуждению материала МОЩНАЯ САМОДЕЛЬНАЯ СОЛНЕЧНАЯ БАТАРЕЯ

Теория работы импульсных источников питания и варианты схемотехники.

Микроконтроллер ATtiny13 и MOSFet транзисторы будут управлять светодиодными лентами в этой схеме ЦМУ.

Электромагнитное реле — теория и практика применения. Обозначение, виды, основные параметры и правила эксплуатации.

Источник

Оцените статью