- Солнечные панели – параллельное, последовательное или последовательно-параллельное соединение?
- ЭВ-160П Солнечная батарея Поликристаллическая 5ВВ PERC
- ЭВ-180М Солнечная батарея монокристаллическая 5ВВ PERC
- SilaSolar 250Вт Солнечная батарея 5BB
- SilaSolar 280Вт Солнечная батарея 5BB PERC
- SilaSolar 250Вт Солнечная батарея 5BB
- SilaSolar 330Вт Солнечная батарея PERC 5BB
- ЭВ-275П Солнечная батарея поликристаллическая 5ВВ PERC
- SilaSolar 340Вт Солнечная батарея PERC 5BB
- ЭВ-330П Солнечная батарея поликристаллическая 5ВВ PERC
- SilaSolar 280Вт Солнечная батарея 5BB Моно
- SilaSolar 300Вт Солнечная батарея PERC 5BB
- ЭВ-305М Солнечная батарея монокристаллическая 6ВВ PERC
- SilaSolar 310Вт Солнечная батарея PERC 5BB
- SilaSolar 350Вт Солнечная батарея PERC 5BB
- SilaSolar 330Вт Солнечная батарея PERC 5BB Моно
- ЭВ-370М Солнечная батарея монокристаллическая 6ВВ PERC
- SilaSolar 370Вт Солнечная батарея PERC 5BB Моно
- SilaSolar 400Вт Солнечная батарея PERC 5ВВ Twin Power
- SilaSolar 400Вт Солнечная батарея PERC 5BB Моно
- SilaSolar 450Вт Монокристаллическая панель PERC 9BB Twin Power
- Как подключить Солнечные Панели (Схемы соединения)
Солнечные панели – параллельное, последовательное или последовательно-параллельное соединение?
Приобретая солнечный инвертор нужно обратить внимание на его входные характеристики, а именно номинальное входное напряжение DC (вольт) и максимальный ток А (Ампер), которые и прописывают нам – как будут подключены солнечные батареи: параллельно, последовательно или последовательно-параллельно.
ЗНАЙТЕ – при параллельном или последовательном подключении солнечных батарей, на выходе вы получите одинаковую мощность! Т.е. при правильном расчете сечения кабеля, а он разный для этих подключений – результат будет равен.
Теперь по пунктам:
Параллельное подключение солнечных панелей – дает нам низкое напряжение (равное напряжению одной панели) и большой ток. Допустим одна солнечная панель 24 вольта и 8 ампер согласно ее паспортным характеристикам. Если мы соединим 2 панели параллельно, то получим, те же 24 вольта, но уже 16 ампер.
Низкое напряжение (вольт) и высокий ток (ампер) очень требовательны к сечению кабеля (толщина жилы кабеля), поэтому здесь нужно очень точно просчитать и приобрести нужную длину и сечение кабеля, для передачи энергии солнца в инвертор без потерь.
Пример:
Входное напряжение инвертора 48 вольт, а мощность подключаемых солнечных панелей которые инвертор потянет = 1 кВт. Мы также имеем солнечные панели у которых “напряжение холостого хода” равно 29 вольт и ток 8,5 Ампер.
29*8,5= 246 ватт, значит, мы можем подключить, только 4 солнечные панели к нашему инвертору – 246*4=984 ватта. Теперь вернемся к нашим “баранам” – входное напряжение инвертора 48 вольт, а с панели идет 29, т.е. последовательное соединение 29+29 = 58 вольт нам не подходит, это значит, что мы будем их подключать паралельно – 29 вольт и 8,5*4 панели =34 Ампера. В итоге, для идеальной передачи таких величин нам понадобиться кабель сечением не менее 16 кв мм.
Вот в этом и состоит недостаток параллельного подключения солнечных панелей, когда низкое напряжение и высокий ток, нужен кабель большого сечения, что бы не потерять полученную энергию и как следствие такой кабель стоит не “плохих” денег. Также большие токи требовательны к соединениям и всегда находят слабое место(((.
ЭВ-160П Солнечная батарея Поликристаллическая 5ВВ PERC
Солнечная батарея ЭВ-160П
Производитель Энерговольт
Поликристаллическая 5 ВВ, PERC
Срок службы не менее 25 лет.
Гарантия 10 лет
ЭВ-180М Солнечная батарея монокристаллическая 5ВВ PERC
Солнечная батарея ЭВ-180М
Производитель Энерговольт
Монокристаллическая 5 ВВ, PERC
Срок службы не менее 30 лет.
КПД 20,2%
Гарантия 10 лет
SilaSolar 250Вт Солнечная батарея 5BB
Солнечная батарея SilaSolar 250Вт
Производитель SilaSolar
Поликристаллическая 5 ВВ, PERC
Срок службы не менее 25 лет.
КПД 17,12%
Гарантия 5 лет
SilaSolar 280Вт Солнечная батарея 5BB PERC
Солнечная батарея SilaSolar 280Вт
Производитель SilaSolar
Поликристаллическая 5 ВВ, PERC
Срок службы не менее 25 лет.
КПД 19,01%
Гарантия 5 лет
SilaSolar 250Вт Солнечная батарея 5BB
Солнечная батарея SilaSolar 250Вт
Производитель SilaSolar
Монокристаллическая 5 ВВ
Срок службы не менее 30 лет.
КПД 17,12%
Гарантия 5 лет
SilaSolar 330Вт Солнечная батарея PERC 5BB
Солнечная батарея SilaSolar 330Вт
Производитель SilaSolar
Поликристаллическая 5 ВВ, PERC
Срок службы не менее 25 лет.
КПД 18,65%
Гарантия 5 лет
ЭВ-275П Солнечная батарея поликристаллическая 5ВВ PERC
Солнечная батарея ЭВ-275П
Производитель Энерговольт
Поликристаллическая 5 ВВ, PERC
Срок службы не менее 25 лет.
КПД 18,9%
Гарантия 10 лет
SilaSolar 340Вт Солнечная батарея PERC 5BB
Солнечная батарея SilaSolar 340Вт
Производитель SilaSolar
Поликристаллическая 5 ВВ, PERC
Срок службы не менее 25 лет.
КПД 19,01%
Гарантия 5 лет
ЭВ-330П Солнечная батарея поликристаллическая 5ВВ PERC
Солнечная батарея ЭВ-330П
Производитель Энерговольт
Поликристаллическая 5 ВВ, PERC
Срок службы не менее 25 лет.
КПД 18,8%
Гарантия 10 лет
SilaSolar 280Вт Солнечная батарея 5BB Моно
Солнечная батарея SilaSolar 280Вт
Производитель SilaSolar
Монокристаллическая 5 ВВ
Срок службы не менее 30 лет.
КПД 18,24%
Гарантия 5 лет
SilaSolar 300Вт Солнечная батарея PERC 5BB
Солнечная батарея SilaSolar 300Вт
Производитель SilaSolar
Монокристаллическая 5 ВВ, PERC
Срок службы не менее 30 лет.
КПД 21,19%
Гарантия 5 лет
ЭВ-305М Солнечная батарея монокристаллическая 6ВВ PERC
Солнечная батарея ЭВ-305М
Производитель Энерговольт
Монокристаллическая 6 ВВ, PERC
Срок службы не менее 30 лет.
КПД 21,07%
Гарантия 10 лет
SilaSolar 310Вт Солнечная батарея PERC 5BB
Солнечная батарея SilaSolar 310Вт
Производитель SilaSolar
Монокристаллическая 5 ВВ, PERC
Срок службы не менее 30 лет.
КПД 21,32%
Гарантия 5 лет
SilaSolar 350Вт Солнечная батарея PERC 5BB
Солнечная батарея SilaSolar 350Вт
Производитель SilaSolar
Монокристаллическая 5 ВВ, PERC
Срок службы не менее 30 лет.
КПД 20,60%
Гарантия 5 лет
SilaSolar 330Вт Солнечная батарея PERC 5BB Моно
Солнечная батарея SilaSolar 330Вт
Производитель SilaSolar
Монокристаллическая 5 ВВ, PERC
Срок службы не менее 30 лет.
КПД 21,92%
Гарантия 5 лет
ЭВ-370М Солнечная батарея монокристаллическая 6ВВ PERC
Солнечная батарея ЭВ-370М
Производитель Энерговольт
Монокристаллическая 6 ВВ, PERC
Срок службы не менее 30 лет.
КПД 21,08%
Гарантия 10 лет
SilaSolar 370Вт Солнечная батарея PERC 5BB Моно
Солнечная батарея SilaSolar 370Вт
Производитель SilaSolar
Монокристаллическая 5 ВВ, PERC
Срок службы не менее 30 лет.
КПД 21,80%
Гарантия 5 лет
SilaSolar 400Вт Солнечная батарея PERC 5ВВ Twin Power
Солнечная батарея SilaSolar 400Вт
Производитель SilaSolar
Монокристаллическая 5 ВВ, PERC,Twin Power
Срок службы не менее 30 лет.
КПД 22,05%
Гарантия 5 лет
SilaSolar 400Вт Солнечная батарея PERC 5BB Моно
Солнечная батарея SilaSolar 400Вт
Производитель SilaSolar
Монокристаллическая 5 ВВ, PERC
Срок службы не менее 30 лет.
КПД 21,30%
Гарантия 5 лет
SilaSolar 450Вт Монокристаллическая панель PERC 9BB Twin Power
Солнечная батарея SilaSolar 450Вт
Производитель SilaSolar
Монокристаллическая 9 ВВ, PERC, Twin Power
Срок службы не менее 30 лет.
КПД 22,5%
Гарантия 5 лет
Последовательное подключение солнечных панелей – дает нам высокое напряжение и низкий ток ( равен одной солнечной панели). Допустим одна солнечная панель 24 вольта и 8 Ампер согласно ее паспортным характеристикам. Если мы соединим 2 панели последовательно, то получим, 48 вольт, но те же 8 ампер.
Высокое напряжение (вольт) и низкий ток (Ампер) уже не так требовательны к сечению кабеля (толщина жилы кабеля), поэтому здесь намного легче просчитать и приобрести нужную длину и сечение кабеля, для передачи энергии солнца в инвертор без потерь.
Пример:
Входное напряжение инвертора 120 вольт, а мощность подключаемых солнечных панелей которые инвертор потянет = 1 кВт. Мы также имеем солнечные панели у которых “напряжение холостого хода” равно 29 вольт и ток 8,5 Ампер.
29*8,5= 246 ватт, значит, мы можем подключить, только 4 солнечные панели к нашему инвертору – 246*4=984 ватта. Но в этом случае мы можем подключить солнечные панели последовательно 29*4=116 вольт при том же токе в 8.5 Ампер. Теперь для передачи таких величин электроэнергии нам хватит кабеля сечением в 6 кв мм.
В этом все плюсы последовательно подключения и как следствие передача энергии без потерь в кабеле меньшим сечением и меньшей стоимостью! Также последовательное подключение позволяет солнечным панелям лучше работать даже в пасмурную погоду, да и контроллер инвертора лучше работает с “высоким ” напряжением.
Последовательно-параллельное подключение солнечных панелей – сочетает все недостатки параллельного и преимущества последовательного, но только на половину. Другими словами такое подключение лучше параллельного, но хуже последовательного!
При таком подключении мы имеем и повышенное напряжение и средний ток. Допустим одна солнечная панель 24 вольта и 8,5 Ампер согласно ее паспортным характеристикам. Если мы соединим по 2 панели последовательно, и получим, 48 вольт, но те же 8, 5 ампер в каждой последовательности, а теперь эти 2 линии панелей, соединим параллельно, в итоге получим на выходе 48 вольт, но уже 17 ампер.
Пример:
Входное напряжение инвертора 60 вольт, а мощность подключаемых солнечных панелей которые инвертор потянет = 1 кВт. Мы также имеем солнечные панели у которых “напряжение холостого хода” равно 29 вольт и ток 8,5 Ампер.
29*8,5= 246 ватт, значит, мы можем подключить, только 4 солнечные панели к нашему инвертору – 246*4=984 ватта. Но в этом случае мы можем подключить солнечные панели последовательно 29*2=58 вольт и токе в 8,5 Ампер * 2 линии параллельно, в итоге получаем = 58 вольт и 17 ампер . Ну и для передачи таких величин электроэнергии нам хватит кабеля сечением в 10 кв мм.
В этом все минусы и плюсы последовательно – параллельного подключения и как следствие передача энергии без потерь в кабеле среднем сечением и средней стоимостью!
Итог: Любое соединение имеет место быть, к каждого есть недостатки и преимущества, очень часто у нас нет выбора как соединять панели т.к. инвертор диктует свои условия.
Совет : для улучшения генерации можно, а иногда даже и нужно увеличить до 25 %, мощность солнечных панелей подключаемых к инвертору если они развернуты немного от юга.
Внимание! увеличение мощности это значит, что если к инвертору подключается масив С/П в 1 кВт, то можно увеличить до 1.25 кВт, но увеличение мощности не значит, что можно увеличить входные напряжения и токи, там должно быть все четко.
Это даст, увеличение выработки в пасмурную погоду, запас мощности в солнечную, а также мы знаем, что солнечные панели уменьшают выработку в процессе использования, это будет так сказать компенсацией на года.
Источник
Как подключить Солнечные Панели (Схемы соединения)
Последовательное соединение, параллельное соединение и последовательно-параллельное соединение солнечных модулей
Возможные варианты подключения солнечных панелей
При монтаже солнечных электростанций неизбежно возникает вопрос – как соединять солнечные панели и чем отличаются варианты подключения. Именно об этом мы и поговорим в этой статье.
Существуют 3 варианта соединения солнечных панелей между собой:
-Последовательно-параллельное соединение солнечных панелей
Для того чтобы разобраться чем они отличаются, обратимся к основным характеристикам солнечных панелей:
• Номинальное напряжение солнечной батареи – как правило 12В или 24В, но существуют и исключения
• Напряжение при пиковой мощности Vmp – напряжение при которой панель выдает максимальную мощность
• Напряжение холостого хода Voc – напряжение в отсутствии нагрузки (важно при выборе контроллера заряда АКБ)
• Напряжение максимальное в системе Vdc – определяет максимальное количество панелей объединенных вместе
• Ток Imp – ток при максимальной мощности панели
• Ток Isc – ток короткого замыкания, максимально возможный ток панели
Мощность солнечной панели определяется как произведение Напряжения и тока в точке максимальной мощности – Vmp* Imp
В зависимости от того какая схема подключения солнечных панелей выбрана, будут определяться характеристики системы солнечных панелей и подбираться соответствующий контроллер заряда.
Теперь предметно рассмотрим каждую схему соединения:
1) Последовательное соединение солнечных панелей
При таком соединении минусовая клемма первой панели соединяется с плюсовой клеммой второй, минусовая второй с клеммой третьей и так далее.
При последовательном соединении нескольких панелей, напряжение всех панелей будет складываться. Ток системы будет равен току панели с минимальным током. По этой причине не рекомендуется соединять последовательно панели с различным значением ток максимальной мощности, поскольку работать они будут не в полную силу.
Рассмотрим на примере:
Имеем 4 солнечных монокристаллических панели со следующими характеристиками:
• Номинальное напряжение солнечной батареи: 12В
• Напряжение при пиковой мощности Vmp: 18.46 В
• Напряжение холостого хода Voc: 22.48В
• Напряжение максимальное в системе Vdc: 1000В
• Ток в точке максимальной мощности Imp: 5.42А
• Ток короткого замыкания Isc: 5.65А
Соединив последовательно 4 таких панели мы получим на выходе номинальное напряжение 12В*4=48В. Напряжение холостого хода = 22,48В*4=89,92В и Ток в точке максимальной мощности равный 5,42А. Эти три параметра задают нам ограничения при выборе контроллера заряда.
2) Параллельное соединение солнечных панелей
В данном случае панели соединяются при помощи специальных Y — коннекторов. У таких коннекторов имеется два входа и один выход. К входам подключаются клеммы одинакового знака.
При таком соединении напряжение на выходе каждой панели будет равны между собой и равны напряжению на выходе из системы панелей. Ток от всех панелей будет складываться. Такое соединение позволяет, не поднимая напряжения увеличить ток от панелей.
Рассмотрим на примере все тех же 4х панелей:
Соединив параллельно 4 таких панели мы получим номинальное напряжение на выходе равное 12В, Напряжение холостого хода останется 22,48В, но ток при этом будет равен 5,42А*4=21,68А.
3) Последовательно-параллельное соединение солнечных панелей
Последний тип соединения объединяет в себе два предыдущих. Применяя данную схему соединения панелей, мы можем регулировать напряжение и ток на выходе из системы нескольких панелей, что позволит подобрать наиболее оптимальный режим работы всей солнечной электростанции.
В случае такого подключения соединенные последовательно цепочки панелей объединяют параллельно.
Вернемся к нашему примеру с 4мя панелями:
Соединив по 2 панели последовательно и затем объединим их соединив цепочки панелей параллельно мы получим следующее. Номинальное напряжение на выходе будет равно сумме двух последовательно соединенных панелей 12В*2=24В, напряжение холостого хода будет равно 22,48В*2=44,96В, а ток при этом будет равен 5,42А*2=10,84А.
Такое соединение позволит максимально сэкономить на покупке контроллера заряда, поскольку от него не потребуется выдерживать больших напряжений как в случае последовательного соединения или больших токов как в случае параллельного соединения. Именно поэтому соединяя панели между собой необходимо стремится к балансу между токами и напряжениями.
О том как подобрать контроллер заряда можно прочитать тут –
А если вы хотите купить солнечную электростанцию ― позвоните по телефону 8-800-100-82-43 (+7-499-709-75-09) или оставьте заявку на сайте и мы сделаем все необходимые расчеты и подберем оптимальную комплектацию для вас!
Источник