Основные типы солнечных батарей

Как выбрать солнечную панель: виды батарей и основные нюансы выбора

Думая об установке солнечных панелей, большинство людей в первую очередь рассматривают такие факторы, как стоимость, эстетика и энергоэффективность. Хотя это важные аспекты, гораздо важнее выбрать подходящий вам тип солнечных батарей. От этого во многом будет зависеть стоимость оборудования и работ по установке, а также то, как панели будут выглядеть на вашей крыше.

Существует три типа солнечных батарей, и у каждого есть свои плюсы и минусы. Правильный выбор будет зависеть от конкретной ситуации и того, что именно вы хотите получить.

Основные типы солнечных панелей

Существуют монокристаллические, поликристаллические и тонкопленочные солнечные панели. Особенности технологии производства и конструктивного исполнения обуславливают визуальные отличия и характеристики каждого типа устройств.

Монокристаллические

Монокристаллические солнечные панели — самый старый и наиболее распространённый тип подобных устройств. Такие батареи состоят из примерно 40 монокристаллических солнечных элементов. Фотоэлектрические компоненты изготавливаются из чистого кремния.

В процессе производства (чаще всего используется метод Чохральского) кристаллический кремний помещается в чан с расплавленным кремнием. Затем кристалл очень медленно вынимается из чана, позволяя расплавленному веществу образовывать твёрдую кристаллическую оболочку, называемую слитком. Далее слиток тонко нарезают на кремниевые пластины.

Читайте также:  Схема солнечных батарей для загородных домов

Пластины превращаются в отдельные элементы, а затем элементы собираются и формируются в солнечную панель.
Монокристаллические солнечные батареи кажутся чёрными из-за того, как солнечный свет взаимодействует с чистым кремнием. Хотя ячейки имеют чёрный цвет, задние листы и рамы могут быть выполнены в различных цветах и отличаться по дизайну. Фотоэлектрические ячейки таких панелей имеют форму квадрата со скруглёнными углами, поэтому между ними есть небольшие зазоры.

Поликристаллические

Поликристаллические солнечные панели — новая разработка, но их популярность и эффективность быстро растут. Как и монокристаллические ячейки, они изготавливаются из кремния. Но в поликристаллическом варианте фотоэлектрические элементы состоят из расплавленных вместе фрагментов кристалла кремния.

В процессе производства кристалл кремния помещается в ёмкость с расплавленным кремнием. Затем, вместо того, чтобы вытаскивать его медленно, кристаллу дают возможность фрагментироваться, а затем остыть. Как только новый кристалл охладится в своей форме, фрагментированный кремний тонко разрезается на поликристаллические солнечные пластины.

Поликристаллические ячейки имеют синий цвет из-за специфической структуры. Солнечный свет отражается от кремниевых фрагментов иначе, чем от цельного кремниевого элемента. Обычно задние рамки и оправы изготавливаются из серебра с поликристаллическим покрытием, но возможны вариации. Форма ячейки — квадрат, между углами ячеек отсутствуют зазоры.

Тонкоплёночные

Тонкоплёночные солнечные панели — это инновационная технология, появившаяся всего несколько лет назад. Главной особенностью является то, что такие батареи не всегда сделаны из кремния. Они могут быть изготовлены из различных материалов, включая теллурид кадмия (CdTe), аморфный кремний (a-Si) и селенид меди, индия, галлия (CIGS).

Эти солнечные батареи создаются путём помещения основного материала между тонкими листами проводящего материала, покрытого слоем стекла для защиты. В панелях a-Si используется кремний, но они используют некристаллическую форму вещества и также покрываются стеклом.

Тонкоплёночные панели легко идентифицировать по их внешнему виду. Эти солнечные батареи примерно в 350 раз тоньше тех, в которых используются кремниевые пластины. Но иногда тонкоплёночные ячейки могут быть большими, и это может сделать внешний вид всей солнечной системы сравнимым с монокристаллической или поликристаллической системой. Тонкоплёночные элементы могут быть чёрными или синими, в зависимости от материала, из которого они сделаны.

Сравнение солнечных панелей разных типов

Помимо отличий в технологии производства и дизайне, есть некоторые различия и в том, как работают разные типы солнечных элементов. Ключевые аспекты — эффективность и цена.

Эффективность

Эффективность определяет то, сколько электричества солнечная панель может произвести за счёт количества получаемого ею солнечного света.

Самыми эффективными считаются монокристаллические панели. Их КПД может достигать 20% и более. С другой стороны, у поликристаллических аналогов этот показатель колеблется в диапазоне от 15 до 17%. Этот разрыв между двумя панелями может сократиться в будущем по мере совершенствования технологий, позволяющих сделать поликристаллические панели более эффективными.

Наименее эффективный тип солнечных панелей — тонкоплёночные. Они обычно имеют более низкий КПД и производят меньше электроэнергии, чем любой из кристаллических вариантов, с КПД всего около 11%. Мощность таких панелей может варьироваться, потому что у них нет стандартного размера.

Стоимость

Цена может существенно повлиять на принятие решения о выборе солнечных панелей. Наиболее доступными являются тонкоплёночные панели, потому что они могут быть изготовлены с наименьшими затратами. CdTe — самые дешёвые солнечные батареи на рынке, CIGS немного дороже.

Рамы тонкоплёночных батарей обычно легче, поэтому можно сэкономить и на монтажных расходах. С другой стороны, монокристаллические солнечные панели сейчас являются самым дорогим вариантом. Производство чистого кремния может быть дорогостоящим, а панели и рамы отличаются большим весом, что приводит к более высоким затратам на установку.

Поликристаллические панели были разработаны для снижения стоимости солнечных панелей, и они обычно более доступны, чем монокристаллические.

Какой тип солнечных батарей лучше?

Лучший тип солнечных панелей зависит от назначения панелей и места их установки. Для жилых домов с большой площадью кровли или недвижимости оптимальным выбором могут быть поликристаллические панели. Эти устройства являются наиболее доступными для больших помещений и обеспечивают достаточную эффективность и мощность.

Для жилых домов с меньшими площадями монокристаллический материал может быть лучшим выбором. Такие панели хорошо подходят для тех, кто хочет максимизировать использование чистой энергии в небольшом пространстве.

Источник

Виды солнечных батарей, особенности производства, различия

В Европе активно развивают альтернативную энергетику, понимая ее безопасность и перспективность такого источника электроэнергии, как солнечные батареи. Желая организовать отопление жилых зданий ил промышленных за счет энергии земного светила, постройки оснащают именно ими. Эти устройства год от года становятся более совершенными, увеличивается их КПД, они становятся готовыми к работе в темное время и в малосолнечных областях.

Чтобы не ошибиться с выбором солнечных батарей, нужно знать достоинства каждого вида и отличия, потом что для конкретных климатических зон применяются разные виды таких устройств.

Принцип функционирования

Большая часть этих экологических солнечных устройств в действительности не что иное, как фотоэлектрический преобразователь, у которого на границе p-n перехода возникает эффект электрогенерации.

Основой себестоимости солнечных батарей является стоимость кремниевые пластины. Но, для того, чтобы они служили круглые сутки источником электрической энергии, одних пластин кремниевых недостаточно – придется приобрести оборудование дополнительное и, прежде всего, достаточно дорогие аккумуляторные батареи.

Устройство

Составляют панель солнечную два кремниевых элемента, отличающиеся по своим свойствам. В одном из них возникает под воздействием света недостаток частиц с отрицательным зарядом –электронов, в другом они присутствуют в избытке.

На каждой из пластин имеются медные полоски, проводящие ток, которые соединяют с преобразователями напряжения.

У солнечной батареи, предназначенной для промышленного применения, есть много фотоэлектрических ячеек, прошедших стадию ламинирования. Они между собой скреплены и закреплены на подложке гибкой или жесткой.

Эффективность солнечных батарей определяется во многом стадией очистки кремния, который используется в производстве, и ориентацией кристаллов в нем. Эти характеристики и стремятся улучшать разработчики. Ежегодно значение КПД удается увеличивать (в разных видах на неодинаковую величину), благодаря миллиардным инвестициям, вкладываемым в исследования фотогальванических элементов. Тем не менее, эффективность остается недостаточной для массового применения солнечных батарей.

Сложности

Основной проблемой является очистка кремния, точнее стоимость этого процесса, а также ориентирование кристаллов в пределах панели в одном направлении.

Могут использоваться для изготовления преобразователей полупроводниковых помимо кремния иные элементы — индий, например. Их применение не сказывается на принципе функционирования — он не меняется.

Классификация промышленных панелей солнечных происходит по типу рабочего слоя и конструктивным особенностям. Различают панели жесткие и гибкие.

Последние занимают все более широкую нишу благодаря универсальной установке: он и легко устанавливаются на любые поверхности, в том числе на вертикальны – фасады зданий. При этом они совершенно не портят архитектуру, а напротив привносят в не некую изюминку.

Как правило, действительные параметры солнечных батарей несколько ниже заявленных производителем, поэтому, прежде чем выбирать, желательно увидеть воочию уже действующий проект.

По типу фотоэлектрического слоя их подразделяют на:

  • кремниевые. К ним относятся поли — , монокристаллические и аморфные;
  • теллурий-кадмиевые. Их собирают на основе индия, меди и галлия;
  • полимерные;
  • органические;
  • с использованием арсенида галлия;
  • комбинированные и многослойные.

Не все перечисленные виды интересны потребителю, а лишь кристаллические, несмотря на то, что их КПД ниже некоторых других (правда, более дорогих, отчего и менее распространенных).

Процесс изготовления кремниевых конструкций

Для получения солнечных панелей применяют кремний, получаемый при перемалывании кристаллов кварца, огромными запасами которого славится Урал и в Сибирь. Именно из-за безграничных запасов это направление считается очень перспективным. Сегодня за кристаллическими и аморфными панелями почти 80% рынка.

Кремниевые монокристаллические панели

Описание

Их легко узнать при визуальном осмотре. В углах элементов хорошо различимы квадратики белого цвета.

Для самих же пластин характерна поверхность однородного синего цвета. Кремний в этом случае требует высокой очистки. Понятно, что технологический процесс по очистке его отличается дороговизной. Затратным является и процесс, результатом которого является ориентирование кристаллов в одном направлении.

Важно: Характеристики рабочего слоя наибольший КПД обеспечивают лишь в случае, когда лучи падают на панели пол прямым углом.

КПД у них достаточно высокий, но и цена тоже самая большая, в сравнении с другими видами пластин.

Солнечным панелям монокристаллическим большой площади необходимы поворотные устройства. В таком виде они считаются идеальным решением для пустынь. Там их производительность наилучшая.

Работать монокристаллические панели не смогут без дополнительного оборудования, способного поворачивать конструкцию вслед за движущимся солнцем, стараясь, чтобы на лучи падали на пластину максимально близко к прямому углу.

Из выращенного в условиях производства кристалла, имеющего вид цилиндра, вырезаются слои. Вот почему у готовых блоков углы скруглены.

Преимущества

  • Высокий КПД – от 17 до 25 процентов;
  • Небольшая площадь для установки;
  • Период эксплуатации достигает 25 и более лет.

Рекомендуем:

Недостатки

Их немного:

  • достаточно высокая цена;
  • небыстрая окупаемость;
  • поверхности панелей слишком чувствительны к различным загрязнениям. Поскольку свет хуже рассеивается на покрытой пылью панели, то и эффективность ее резко падает;
  • необходимость в прямых лучах требует их размещения только на открытых местах и высоко от земли.

Чем область ближе расположена к экватору, тем большее там количество в году солнечных дней. И это вид панелей, использующих энергию солнца, наиболее предпочтительный.

Поликристаллические

Описание

Все кремниевые устройства слишком реагируют на перегрев. Температура, рекомендуемая для измерения электрогенерации, составляет 25 градусов. Даже при ее увеличении всего на градус производительность уменьшается на 0,5%.

Поликристаллические конструкции также легко определить визуально, поскольку окрас их неравномерный, что связано с разной ориентированностью кристаллов, обеспечивающей высокое КПД в рассеянном свете. Хотя значение его меньше, чем в панелях однонаправленных, в непогоду наибольшей эффективностью отличаются именно они.

Чистота кремния намного ниже, чем у рассмотренных выше, также допускается присутствие примесей и инородных включений. Это снижает себестоимость. Для этого вида панелей металл просто разливается в формы. Затем, используя специальные приемы, формируют кристаллы, направленность которых контролировать не нужно.

Остывший кремний режут на слои, обрабатывая их по специальному алгоритму.

Эти батареи не нуждаются в непрерывном ориентировании на солнце, следовательно, для их установки пригодны крыши зданий.

Достоинства аморфного кремния в полной мере раскрываются в тени и с наступлением облачных дней и практически незаметны в солнечную погоду.

Не нужны им и поворотные механизмы, поскольку крепятся они стационарно.

Стоит такая разновидность панелей меньше, чем ориентированные. Эффективность их падает на 20% после 20-летнего использования.

Недостатки

Они, понятно, есть:

  • Более низкий КПД;
  • Необходимо большая площадь для монтажа.

В последние годы, благодаря новым исследованиям и появляющимся технологиям, КПД неуклонно растет и у некоторых панелей достигает 20%.

Панели из аморфного кремния

Описание

Механизм их изготовления совершенно иной, чем у кристаллических фотоэлементов. Для них используется гидрид вместо чистого кремния. Его нагревают до парообразного состояния. Когда пары достигают подложки, они осаждаются на ней. Затраты на изготовления снижаются, а кристаллы не образуются (в понимании классическом).

Полученные фотоэлементы в основе имеют полимерную подложку гибкую либо жесткий стеклянный лист.

Разработано уже 3 поколения таких панелей, анализ характеристик которых дает право говорить о растущем КПД. Первые образцы отличались эффективностью, едва достигавшей 5%, у второго поколения это значение достигало 9, а у последних разработок это уже 12%. Их уже можно встретить в продаже, но цена на них пока остается высокой.

Благодаря особой структуре, подобные солнечные панели максимально поглощают энергию в слабом рассеянном свете, поэтому успешно применяются они в районах севера, где мало солнца и имеются огромные свободные площади.

Важно: на эффективности работы таких батарей не сказывается повышение температуры, хотя в сравнении с панелями на основе арсенида галлия, она ниже.

Преимущества

  • гибкая основа, упрощающая монтаж и расширяющая область использования;
  • в рассеянном свет высокий КПД;
  • стабильность при высокой температуре;
  • устойчивость к повреждениям механического характера;
  • независимость от загрязнений.

При правильной эксплуатации они служат не менее 20 лет, за которые падение мощности составляет 15-20.

Недостатки

Единственным минусом считается потребность в большой площади.

Помимо кремниевых, производятся панели, в основе которых лежат редкие, значит, дорогостоящие металлы. КПД подобных конструкций превышает 30%, а цена в разы выше стоимости кремниевых. И, несмотря на это, свою нишу на рынке они успели занять.

Панели из редких металлов

Описание

КПД у них высокий. По этому показателю они впереди кремниевых. В основе устройств, способных к работе в условиях экстремальных, лежит теллурид кадмия. Применяются они для облицовки строений в экваториальных странах, где в дневное время поверхности нагреваться порой выше 80 градусов.

Также растет популярность селенид –индий – медно – галлиевых панелей и селенид- индий – медных.

Но, не забывая о токсичности кадмия, и о том, что галлий с индием достаточно редко встречающиеся металлы, невозможно даже предположить, что они будут использоваться для массового производства.

Их эффективность измеряется 35%, даже иногда 40%. Ранее применялись они в космической области, а сегодня – в тепловых электрических солнечных станциях (благодаря стабильности в диапазоне 130-150 градусов).

На панели маленькой площади концентрируются лучи сотен зеркал. Она генерирует ток и передает одновременно водяному теплообменнику тепло. Он нагревает воду до парообразного состояния. Пар приводит во вращение турбину, генерирующую энергию электрическую. То есть, с наибольшей эффективностью энергия солнца сразу двумя способами превращается в электрическую.

Органические аналоги и полимерные

Это самые новые разработки, появившиеся в последнее время – органические панели, которые отличаются абсолютной безопасностью для экологии и недорогим производственным процессом. Успехов в этом направлении удалось достичь больших.

Среди европейских компаний, успехом наибольшим похвастаться может фирма Heliatek, оснастившая своими пленочными конструкциями, у которых толщина всего миллиметр, ряд зданий. Их КПД находится в пределах 14-15%, цена же ниже в разы, чем у аналогов кристаллических.

Какой же панели отдать предпочтение?

Для загородных коттеджей не трудно выбрать батарею, если он находится на широте 45-60. И выбирать здесь нужно из кремниевых моно- и поликристаллических видов.

При недостаточности места рекомендуется выбрать первые, при отсутствии ограничений площади – вторые.

Производителя, мощность, способную решить все проблемы, оборудование дополнительное рекомендуется выбирать с менеджерами, занимающимися продажей и монтажом данного оборудования.

Видео: ABC-Solar — Виды солнечных панелей

Видео: Поликристаллическая солнечная панель против монокристаллической.

Автор и редактор обзоров по гаджетам и новой техники. Ведет работы по написанию свежих рейтингов к публикациям, проверки достоверности и актуальности информации уже опубликованных статей. Отвечает на вопросы в комментариях, пишет на авто темы.

Источник

Оцените статью