Обеспечиваемая мощность вэу определяется

Ветроэнергетика. Мощность ветроэнергетических установок.

Ветроэнергетика с ее современным техническим оснащением является вполне сложившимся направлением энергетики. Ветроэнергетические установки мощностью от нескольких киловатт до мегаватт производятся в Европе, США и других частях мира. Большая часть этих установок используется для производства электроэнергии, как в единой энергосистеме, так и в автономных режимах.

Известно, что при скорости ветра u, м/с, и плотности воздуха р, кг/м3, ветроколесо, ометающее площадь F, м 2 развивает мощность Р, Вт, пределяемую P = ξFρu 3 /2. Здесь ξ – коэффициент мощности, характеризующий эффективность использования ветроколесом энергии ветрового потока и принимаемый равным 0,35.

Из формулы видно, что мощность Р пропорциональна ометаемой площади F и кубу скорости. Коэффициент мощности зазависит от конструкции ветроколеса и скорости ветра. Так как скорость ветра непостоянна, а мощность очень сильно зависит от скорости, то выбор оптимальной конструкции ветроколеса во многом определяется требованиями потребителя энергии. Обычно среднегодовая мощность, снимаемая с единицы площади ветроколеса, пропорциональна плотности воздуха и кубу средней скорости. Максимальная проектная мощность ветроэнергетической установки (ВЭУ) определяется для некоторой стандартной скорости ветра. Обычно эта скорость равна примерно 12 м/с, при этом снимаемая с 1 м 2 ометаемой площади мощность — порядка 300 Вт при значении ξ от 0,3 до 0,45. В районах с благоприятными ветровыми условиями среднегодовое производство электроэнергии составляет 22 – 30% его максимального проектного значения. Срок службы ветрогенераторов обычно не менее 15 – 20 лет, а их стоимость колеблется от 1000 до 1500 долл. США за 1 кВт проектной мощности.

Одно из основных условий при проектировании ветровых установок — обеспечение их защиты от разрушения очень сильными случайными порывами ветра. Ветровые нагрузки пропорциональны квадрату скорости ветра, а раз в 50 лет бывают ветры со скоростью, в 5 – 10 раз превышающей среднюю, поэтому установки приходится проектировать с очень большим запасом прочности. Кроме того, скорость ветра очень колеблется во времени, что может привести к усталостным разрушениям, а для лопастей к тому же существенны переменные гравитационные нагрузки (порядка 10 7 циклов за 20 лет эксплуатации).

Читайте также:  Солнечные батареи ветряки это

Причиной возникновения ветров является поглощение земной атмосферой солнечного излучения, приводящее к расширению воздуха и появлению конвективных течений. В глобальном масштабе на эти термические явления накладывается эффект вращения Земли, приводящий к появлению преобладающих направлений ветра. Кроме этих общих, или синоптических, закономерностей многое в этих процессах определяется местными особенностями, обусловленными определенными географическими или экологическими факторами. Скорость ветров увеличивается с высотой, а их горизонтальная составляющая значительно больше вертикальной. Последнее обстоятельство является основной причиной возникновения резких порывов ветра и некоторых других мелкомасштабных эффектов. Суммарная кинетическая энергия ветров оценивается величиной порядка 0,7 10 21 Дж. Вследствие трения, в основном в атмосфере, а также при контакте с земной и водной поверхностями эта энергия непрерывно рассеивается, при этом рассеиваемая мощность — порядка 1,2 10 15 Вт, что равно примерно 1% поглощенной энергии солнечного излучения.

Для анализа ветроэнергетического потенциала местности составляется ветроэнергетический кадастр, который представляет собой районированную систему численных характеристик режима ветра. Вэтроэнергетический кадастр – это совокупность объективно достоверных и необходимых количественных сведений, характеризующих ветер как источник энергии. В кадастре все характеристики обычно представлены в табличной или графической форме, используя материалы многолетних наблюдений.

Достоверно оценить, какая доля энергии ветра может быть использована в энергетике, вряд ли возможно, так как эта оценка очень сильно зависит от уровня развития ветроэнергетики и ее потребителей. Тем не менее, официальные оценки возможной доли ветроэнергетики в энергетике в целом, например, в Великобритании и Западной Германии, не предполагающие каких-либо серьезных изменений в сложившейся инфраструктуре энергопотребления, дают не менее 20%. При определенных изменениях инфраструктуры доля ветроэнергетики может быть существенно большей. Автономные ветровые энергоустановки весьма перспективны для вытеснения дизельных электростанций и отопительных установок, работающих на нефтепродуктах, особенно в отдаленных районах и на островах. Ветроэнергетические установки классифицируются по двум основным признакам – геометрии ветроколеса и его положению относительно направления ветра.

Читайте также:  Электрогенератор бензиновый huter dy8000l

Цель работы Изучение методики определения ветроэнергетического потенциала местности. Получение навыков расчета энергетических параметров ветра.

В большинстве прикладных задач ветроэнергетики гораздо важнее знать не суммарное количество энергии, которое может выработать ветроустановка, например, за год, а ту мощность, которую она может обеспечивать постоянно. При сильном ветре, от 10 до 12 м/c, ветроустановки вырабатывают достаточно электроэнергии, которую иногда даже приходится сбрасывать в систему или запасать. Трудности возникают в периоды длительного затишья или слабого ветра. Поэтому для ветроэнергетики является законом считать районы со средней скоростью ветра менее 5 м/с малопригодными для размещения ветроустановок, а со скоростью 8 м/с – очень хорошими. Но независимо от этого во всех случаях требуется тщательный выбор параметров ветроустановок применительно к местным метеоусловиям.

1. Описание методики измерений и расчетов

Для проведения анализа ветроэнеретического потенциала требуется предварительно проводить в течение года ежедневные 5-ти кратные измерения скорости ветра с равными промежутками времени: в 9 ч, 12 ч, 15 ч, 18 ч и в 21ч.

В данной лабораторной работе используется база данных метеоизмерений, полученная для системы оптимизации теплопотребления главного корпуса ОГАУ. Измерения проводились ежедневно в течение одного года с интервалом 3 часа.

Порядок обработки результатов измерений следующий.

1. Результаты измерений скорости ветра u1, м/c, объединяются в группы с интервалом Δu. Общее число измерений N = 2912.

2. Поскольку измерения скорости проводились на высоте h1 = 2м, а для оценки энергетического потенциала нужна скорость ветра u, м/с, на высоте предполагаемой установки ветротурбин h, определение скорости ветра на высоте h выполняется с помощью известной аппроксимационной зависимости

где h принимается равной 100 м.

3. Определяется величина вероятностного распределения скорости ветра

где Nui – число измерений в i-ом скоростном интервале.

Строится зависимость Фu=f(u). Произведение ФuΔu может быть интерпретировано как часть времени года, в течение которого скорость ветра имеет значения, заключенные _в интервале от u до u+Δu.

4. Среднее значение скорости ветра uc, м/с, определяется соотношением

где Σ ui – сумма всех измеренных значений скорости.

5. Определяется вероятность Фu>u’ появления ветра со скоростью u, большей некоторой заданной скорости u’, для чего складываются вероятности всех скоростных интервалов, в которых u > u’.

Вероятность Фu>u’ может быть интерпретирована как часть времени года, в течение которого ветры дуют со скоростью, большей u’.

Строится зависимость Фu>u’ =f(u).

6. Мощность ветрового потока единичного сечения Pu, Вт определяется

где ρ – плотность воздуха, принимается равной 1,3 кг/м3.

Произведение P Фu представляет собой функцию распределения энергии ветра.

7. Строится зависимость Pu = f(Фu>u’), позволяющая определить вероятность ожидания ветрового потока заданной мощности.

Все данные измерений и расчетов заносятся в таблицу и обрабатываются в EXCEL. В таблице 1.1 частично представлены результаты измерений и расчетов.

После выполнения обработки измерений и расчетов необходим провести анализ полученных результатов.

Статистический анализ результатов измерений скорости ветра г. Оренбурга

2. Анализ полученных результатов

1. Пользуясь построенной зависимостью Фu=f(u), необходимо сравнить

среднее значение скорости ветра с наиболее вероятным значением скорости ветра в данной местности, а также с расчетной скоростью, принимаемой для проектирования ВЭУ (и = 10 – 12 м/с).

2. Пользуясь построенной зависимостью P Фu =f(u), определить значение скорости при которой функция распределения энергии ветра имеет максимум и сравнить его с наиболее вероятным значением скорости ветра в данной местности.

3. Пользуясь построенной зависимостью Pu = f(Фu>u’), определить вероятность ожидания ветрового потока мощностью 0,5; 1 и 2 кВт.

4. По результатам проведенного анализа сделать выводы и составить

| следующая лекция ==>
Декабрист в повседневной жизни 7 страница | Конструкции и принцип работы основных узлов и агрегатов: многолопастных ветродвигателей, малолопастных (быстроходных) ветродвигателей.

Дата добавления: 2016-03-15 ; просмотров: 3196 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

ВЕТРОЭНЕРГЕТИКА. Мощность ветроэнергетических установок

Тема 4. НЕТРАДИЦИОННАЯ ЭНЕРГЕТИКА

ПРИЧИНЫ ПОЯВЛЕНИЯ ИНТЕРЕСА К НЕТРАДИЦИОННЫМ ИСТОЧНИКАМ ЭНЕРГИИ

За последние 10-15 лет существенно возрос интерес к нетрадиционным возобновляемым источникам энергии, к числу которых в первую очередь относятся солнечная, ветровая, геотермальная энергия, энергия биомассы и энергия вод мирового океана. Этот интерес обусловлен главным образом экологической чистотой нетрадиционных возобновляемых источников энергии и неисчерпаемостью и заботой о сохранении невозобновляемых источников — угля, нефти и газа в недалеком будущем Определенное значение имеет и научно-технический прогресс в области их применения. Вклад перечисленных источников энергии в мировой энергетический баланс сейчас небольшой и в перспективе оценивается от 1 до 10 % в общем потреблении первичных энергоресурсов в мире, однако эти энергетические установки не только прошли экспериментальный период, но и в большинстве случаев получили массовое внедрение.

Таким образом, перечисленный вид возобновляемых источников энергии в будущем не решает вопроса о замене существующих традиционных невозобновляемых источников, а является дополнительным вкладом в общий энергетический баланс нашей планеты. Учитывая современный уровень развития фундаментальных и прикладных наук в области энергетики, можно сделать вывод, что замена существующих традиционных невозобновляемых источников получения энергии может произойти при использовании одного из двух видов энергии: термоядерного синтеза или солнечной энергии, преобразованной в электрическую на одной из космических станций. Возможно их одновременное развитие и внедрение в большую энергетику

ВЕТРОЭНЕРГЕТИКА. Мощность ветроэнергетических установок

Ветроэнергетика с ее современным техническим оснащением является вполне сложившимся направлением энергетики. Ветроэнергетические установки мощностью от нескольких киловатт до мегаватт производятся в Европе, США и других частях мира. Большая часть этих установок используется для производства электроэнергии, как в единой энергосистеме, так и в автономных режимах.

Основными достоинствами ветроэнергетики являются:

— простота конструкций и простота их эксплуатации;

— доступность этого поистине неисчерпаемого источника энергии.

К недостаткам следует прежде всего отнести:

— непостоянство направления и силы ветра;

— возможность длительных простоев и вытекающая из этого необходимость аккумулирования и резервирования ветроэнергетических установок;

— отчуждение территорий и изменение традиционных ландшафтов.

Известно, что при средней скорости ветра , м/с, и плотности воздуха ρ, кг/м3, ветроколесо, ометающее площадь F, м 2 развивает мощность N, Вт, определяемую

N = 0.5 ξFρ 3 .

Здесь ξ – коэффициент мощности, характеризующий эффективность использования ветроколесом энергии ветрового потока и принимаемый равным 0,45.

Из этой формулы видно, что мощность N пропорциональна ометаемой площади F и кубу скорости v. Коэффициент мощности ξ зависит от конструкции ветроколеса и скорости ветра. Так как скорость ветра непостоянна, а мощность очень сильно зависит от скорости, то выбор оптимальной конструкции ветроколеса во многом определяется требованиями потребителя энергии.

Обычно среднегодовая мощность, снимаемая с единицы площади ветроколеса для F= 1м 2 , пропорциональна плотности воздуха ρ и кубу средней скорости v:

Nуд =0.5 ξρ 3 .

Максимальная проектная мощность ветроэнергетической установки (ВЭУ) определяется для некоторой стандартной скорости ветра. Обычно эта скорость равна примерно 12 м/с, при этом снимаемая с 1 м 2 ометаемой площади мощность – порядка 300 Вт при значении ξ от 0,3 до 0,45. В районах с благоприятными ветровыми условиями среднегодовое производство электроэнергии составляет 22 – 30% его максимального проектного значения. Срок службы ветрогенераторов обычно не менее 15 – 20 лет.

Одно из основных условий при проектировании ветровых установок – обеспечение их защиты от разрушения очень сильными случайными порывами ветра. Ветровые нагрузки пропорциональны квадрату скорости ветра, а раз в 50 лет бывают ветры со скоростью, в 5 – 10 раз превышающей среднюю, поэтому установки приходится проектировать с очень большим запасом прочности. Кроме того, скорость ветра очень колеблется во времени, что может привести к усталостным разрушениям, а для лопастей к тому же существенны переменные гравитационные нагрузки (порядка 107 циклов за 20 лет эксплуатации).

Причиной возникновения ветров является поглощение земной атмосферой солнечного излучения, приводящее к расширению воздуха и появлению конвективных течений. В глобальном масштабе на эти термические явления накладывается эффект вращения Земли, приводящий к появлению преобладающих направлений ветра. Кроме этих общих, или синоптических, закономерностей многое в этих процессах определяется местными особенностями, обусловленными определенными географическими или экологическими факторами. Скорость ветров увеличивается с высотой, а их горизонтальная составляющая значительно больше вертикальной. Последнее обстоятельство является основной причиной возникновения резких порывов ветра и некоторых других мелкомасштабных эффектов. Суммарная кинетическая энергия ветров оценивается величиной порядка 0,7ּ 1021 Дж. Вследствие трения, в основном в атмосфере, а также при контакте с земной и водной поверхностями эта энергия непрерывно рассеивается, при этом рассеиваемая мощность – порядка 1,2ּ 1015 Вт, что равно примерно 1% поглощенной энергии солнечного излучения.

Для анализа ветроэнергетического потенциала местности составляется ветроэнергетический кадастр, который представляет собой районированную систему численных характеристик режима ветра. Ветроэнергетический кадастр – это совокупность объективно достоверных и необходимых количественных сведений, характеризующих ветер как источник энергии. В кадастре все характеристики обычно представлены в табличной или графической форме, используя материалы многолетних наблюдений.

В большинстве прикладных задач ветроэнергетики гораздо важнее знать не суммарное количество энергии, которое может выработать ветроустановка, например, за год, а ту мощность, которую она может обеспечивать постоянно. При сильном ветре, от 10 до 12 м/c, ветроустановки вырабатывают достаточно электроэнергии, которую иногда даже приходится сбрасывать в систему или запасать. Трудности возникают в периоды длительного затишья или слабого ветра. Поэтому для ветроэнергетики является законом считать районы со средней скоростью ветра менее 5 м/с малопригодными для размещенияветроустановок, а со скоростью 8 м/с – очень хорошими. Но независимо от этого во всех случаях требуется тщательный выбор параметров ветроустановок применительно к местным метеоусловиям.

Достоверно оценить, какая доля энергии ветра может быть использована в энергетике, вряд ли возможно, так как эта оценка очень сильно зависит от уровня развития ветроэнергетики и ее потребителей. Тем не менее, официальные оценки возможной доли ветроэнергетики в энергетике в целом, например, в Великобритании и Западной Германии, не предполагающие каких-либо серьезных изменений в сложившейся инфраструктуре энергопотребления, дают не менее 20%. При определенных изменениях инфраструктуры доля ветроэнергетики может быть существенно большей. Автономные ветровые энергоустановки весьма перспективны для вытеснения дизельных электростанций и отопительных установок, работающих на нефтепродуктах, особенно в отдаленных районах и на островах.

Ветроэнергетические установки классифицируются по двум основным признакам – геометрии ветроколеса и его положению относительно направления ветра.

Классификация ветроэлектрогенераторов на основе перечисленных

выше признаков следующая:

— ВЭУ с горизонтальной осью (рис. 4.1 а) .

— ВЭУ с вертикальной осью (рис. 4.1 б).

Рис. 4.1. Виды ветроэнергетических установок: а — ВЭУ с горизонтальной осью вращения; б — ВЭУ с вертикальной осью вращения;

1 — рабочее колесо; 2— гондола с двигателем и редуктором; 3— башня;
4— фундамент установки

ВЭУ с горизонтальной осью. Рассмотрим горизонтально-осевые ветроколеса пропеллерного типа. Основной вращающей силой уколес этого типа является подъемная сила. Относительно ветра ветроколесо в рабочем положении может располагаться перед опорной башней или за ней. При переднем расположении ветроколесо должно иметь аэродинамический стабилизатор или какое-либо другое устройство, удерживающее его в рабочем положении. При заднем расположении башня частично затеняет ветроколесо и турбулизирует набегающий на него поток. При работе колеса в таких условиях возникают циклические нагрузки, повышенный шум и флуктуации выходных параметров ветроустановки. Направление ветра может изменяться довольно быстро, и ветроколесо должно четко отслеживать эти изменения. Поэтому в ВЭУ мощностью более 50 кВт для этой цели используются электрические серводвигатели.

В таких ветроэлектрогенераторах обычно используются двух- и трехлопастные ветроколеса, последние отличаются плавным ходом. Электрогенератор и редуктор, соединяющий его с ветроколесом, расположены, обычно, наверху опорной башни в поворотной головке. В принципе их удобнее размещать внизу, но возникающие при этом сложности с передачей крутящего момента обесценивают преимущества такого размещения. Многолопастные колеса, развивающие большой крутящий момент при слабом ветре, используются для перекачки воды и других целей, не требующих высокой частоты вращения ветрового колеса.

ВЭУ с вертикальной осью. ВЭУ с вертикальной осью вращения вследствие своей геометрии при любом направлении ветра находятся в рабочем положении. Кроме того, такая схема позволяет за счет только удлинения вала установить редуктор с генераторами внизу башни.

Принципиальными недостатками таких установок являются:

1) гораздо большая подверженность их усталостным разрушениям из-за

более часто возникающих в них автоколебательных процессов;

2) пульсация крутящего момента, приводящая к нежелательным

пульсациям выходных параметров генератора.

Из-за этого в настоящее время в мире и России наибольшее распространение получили трехлопастные ВЭУ с горизонтальной осью вращения, в состав которых входят следующие основные компоненты: рабочее колесо 1, гондола 2 с редуктором и генератором, башня 3 и фундамент 4. Однако исследования различных типов вертикально-осевых установок продолжаются.

Башня — чаще трубообразная, реже — решетчатая, на ней в гондоле размещается основное энергетическое, механическое и вспомогательное оборудование ВЭУ, в том числе рабочее колесо или ротор с лопастями, преобразующие энергию ветра в энергию вращения вала, редуктор для повышения частоты вращения вала ротора и генератор. Лопасти ротора могут быть жестко закреплены на его втулке или изменять свое положение в зависимости от скорости ветра для повышения полезной мощности ВЭУ.

В качестве генератора могут использоваться: синхронные и асинхронные (чаще всего), а также (реже) асинхронизируемые синхронные генераторы.

Для ориентировочных расчетов в диапазоне скоростей ветра от vp min до vp Р полезная мощность ВЭУ для заданных средней скорости ветра на высоте башни Hб (м) и диаметра ротора ВЭУ D, (м) рассчитывается по формуле

,

где — определяется по формуле Nуд =0.5 ξρ 3 , Вт/м 2 ; — ометаемая площадь ВЭУ с горизонтальной осью, определяемая по формуле = , м 2 ; — КПД ротора (около 0,9); КПД электрогенератора (около 0,95).

Обычно в расчетах принимают (плотность воздуха). Тогда при подстановке всех указанных значений получаем для ориентировочных расчетов следующую формулу

.

3. СОЛНЕЧНАЯ ЭНЕРГЕТИКА.Солнечные коллекторы

Солнечная энергетика — отрасль науки и техники, разрабатывающая основы, методы и средства использования солнечного излучения или солнечной радиации для получения электрической, тепловой и других видов энергии и использования их в народном хозяйстве.

Лучистая энергия Солнца, поступающая на Землю, представляет собой самый значительный источник энергии, которым располагает человечество. Поток солнечной энергии на земную поверхность эквивалентен условному топливу в количестве 1,2 • 10 14 т. Солнце, как и другие звезды, является раскаленным газом. В его составе 82% водорода, 17% гелия; остальные элементы составляют около 1%. Внутри Солнца существует область высокого давления, где температура достигает 15—20 млн град.

Солнечное излучение (СИ) — это процесс переноса энергии при распределении электромагнитных волн в прозрачной среде. По квантовой теории электромагнитные волны — это поток элементарных частиц и фотонов с нулевой массой покоя, движущихся в вакууме со скоростью света. В космосе через 1 м 2 в 1 с проходит 3 • 10 21 фотонов, энергия которых зависит от длины волны (мкм).

Земля находится от Солнца на расстоянии примерно 150 млн. км. Площадь поверхности Земли, облучаемой Солнцем, составляет около
500 • 10 6 км 2 . Поток солнечной радиации, достигающей Земли, по разным оценкам, составляет (7,5—10) • 10 7 кВт — ч/год, или (0,85—1,2) • 10 14 кВт, что значительно превышает ресурсы всех других возобновляемых источников энергии.

Солнечное излучение на поверхность Земли зависит от многих факторов: широты и долготы местности, ее географических и климатических особенностей, состояния атмосферы, высоты Солнца над горизонтом, размещения приемника СИ на Земле и по отношению к Солнцу и т.д.

Поток солнечного излучения на Землю меняется, достигая максимума в 2200 кВт ■ ч/м 2 в год для северо-запада США, запада Южной Америки, части юга и севера Африки, Саудовской Аравии и центральной части Австралии. Россия находится в зоне, где поток СИ меняется в пределах от 800 до 1400 кВт • ч/м 2 в год. При этом продолжительность солнечного сияния в России находится в пределах от 1700 до 2000 ч/год и несколько более. Максимум указанных значений на Земле составляет более 3600 ч/год. За год на всю территорию России поступает солнечной энергии больше, чем энергии от всех российских ресурсов нефти, газа, угля и урана.

В мире сегодня солнечная энергетика развивается весьма интенсивно, занимая видное место в топливно-энергетическом комплексе ряда стран, например в Германии. На рис. 4.2 представлена структурная схема солнечной электростанции.

Рис. 4.2. Структурная схема солнечной электростанции:

1,2 — система гелиостатов –зеркал; 3 – паровой приемник; 4 – накопитель; 5- парогенератор; 6 — паровая турбина; 7 – генератор; 8 -конденсатор

Принцип работы солнечных наземных электростанций (рис. 4.2) основан на термодинамическом методе и заключается в постоянном слежении за движением Солнца тысяч гелиостатов — плоских зеркал 2, отражающих падающие на них лучи в паровой приемник 3, находящийся в фокусе этих лучей. Образовавшийся от нагрева пар поступает в накопитель 4, из которого вводится в парогенератор 5. В парогенераторе из первичного пара образуется пар с необходимыми параметрами для паровой турбины 6. От вращающегося генератора 7, находящегося на одном валу с паровой турбиной, электрическая энергия передается в энергосистему. Отработанный пар в турбине поступает в конденсатор 8, откуда в виде конденсата перекачивается в парогенератор, а затем через охлаждающую систему вновь поступает в паровой приемник.

Солнечная энергия на Земле используется благодаря солнечным энергетическим установкам, которые можно классифицировать по следующим признакам:

по виду преобразования солнечной энергии в другие виды энергии — теплоту или электричество;

по концентрированию энергии — с концентраторами и без них;

по технической сложности — простые (нагрев воды, сушил­ки, нагревательные печи, опреснители и т.п.) и сложные.

Последние можно разделить на два подвида. Первый (простые) базируется в основном на системе преобразования солнечного излучения в тепло, которое далее чаще всего используется в обычных схемах тепловых электростанций. К ним относятся: башенные солнечные электростанции (СЭС), солнечные пруды, солнечные энергетические установки с параболоцилиндрическими концентраторами.

Второй подвид (сложные) базируется на прямом преобразовании солнечного излучения в электроэнергию с помощью солнечных фотоэлектрических установок (СФЭУ).

Солнечные коллекторы (СК) (рис. 4.3) — это технические устройства, предназначенные для прямого преобразования СИ в тепловую энергию в системах теплоснабжения для нагрева воздуха, воды или других жидкостей.

Системы теплоснабжения обычно принято разделять на пассивные и активные. Самыми простыми и дешевыми являются пассивные системы теплоснабжения, которые для сбора и распределения солнечной энергии используют специальным образом сконструированные архитектурные или строительные элементы здания или сооружения и не требуют дополнительного специального оборудования.

В настоящее время в мире все большее распространение получают активные системы теплоснабжения со специально установленным оборудованием для сбора, хранения и распространения энергии СИ, которые по сравнению с пассивными позволяют значительно повысить эффективность использования СИ, обеспечить большие возможности регулирования тепловой нагрузки и расширить область применения солнечных систем теплоснабжения в целом.

Солнечные коллекторы классифицируются по следующим признакам:

1) назначению — для горячего водоснабжения, отопления;

2) виду теплоносителя — жидкостные и воздушные;

3) продолжительности работы — сезонные и круглогодичные;

4) техническому решению — одно-, двух- и многоконтурные. Сегодня наиболее распространены плоские водонагреватели или СК (рис. 4.3.), позволяющие использовать как прямую, так и диффузную составляющую СИ, которая весьма значительна в условиях России.

Рис. 4.3. Плоский солнечный коллектор: 1 солнечные лучи; 2 — остекление; 3 — корпус; 4 – теплопоглощающие каналы; 5 — теплоизоляция; 6 – собственное длинноволновое излучение тепловоспринимающей пластины

Такой СК представляет собой теплоизолированный с тыльной стороны к СИ и боков ящик, внутри которого расположены теплопоглощающие каналы 4, по которым движется теплоноситель. Сверху СК закрыт светопроникающим материалом. Циркуляция теплоносителя в таком подогревателе (чаще всего воды) может осуществляться принудительно с помощью небольшого насоса или естественным путем за счет разности гидростатических давлений в столбах холодной и горячей воды (рис. 4.4).

Рис. 4.4. Солнечный водонагреватель

Обычный солнечный водоподогреватель для нагрева воды до 50—60 °С, в котором облучаемая поверхность ориентирована на юг под углом 25—35 град к горизонту, имеет дневную производительность в среднем 70—80 л воды с 1 м 2 поверхности нагревателя.

В ряде стран мира солнечные коллекторы систем теплоснабжения стали обычным атрибутом жизни. Технологии эффективного нагрева воды для бытовых целей с помощью СИ достаточно хорошо отработаны. Например, в США более 60% находящихся в среднем на широте Крыма частных и общественных бассейнов обогреваются за счет СИ. При этом используются простейшие и дешевые системы — бесстекольные, без тепловой изоляции, пластиковые.

Солнечные фотоэлектрические установки в настоящее время находят все более широкое распространение в качестве источника энергии для средних и малых автономных потребителей, а иногда и для больших солнечных электростанций, работающих в энергосистемах параллельно с традиционными ТЭС, ГЭС и АЭС. Конструктивно СФЭУ обычно состоит из солнечных батарей в виде плоских прямоугольных поверхностей, работа которых состоит в преобразовании энергии СИ в электрическую. В фотоэлектрическом генераторе электрический ток возникает в результате процессов, происходящих в фотоэлементе при попадании на него СИ. Наиболее эффективны те из них, которые основаны на возбуждении ЭДС на границе между проводником и светочувствительным полупроводником (например, кремний) или между разнородными проводниками.

За последние десятилетия фотоэнергетика значительно продвинулась вперед в решении двух основных проблем: повышения КПД СФЭУ и снижения стоимости их производства.

Наибольшее распространение получили СФЭУ на основе кремния трех видов: моно- и поликристаллического, а также аморфного. В промышленном производстве находятся СФЭУ со следующими КПД:

• монокристаллический — 15—16% (до 24% на опытных образцах);

• поликристаллический — 12—13% (до 16% на опытных образцах);

• аморфный — 8—10 % (до 14% на опытных образцах).

Все эти данные соответствуют так называемым однослойным фотоэлементам. Сегодня уже исследуются двух- и трехслойные фотоэлементы, которые позволяют использовать большую часть солнечного спектра по длине волны солнечного излучения. Для двухслойного фотоэлемента на опытных образцах получено КПД 30%, а трехслойного 35—40 %.

Наконец, в последние годы появился весьма перспективный конкурент для кремния в СФЭУ — арсенид галлия. Установки на его основе даже в однослойном исполнении имеют КПД до 30% при гораздо более слабой зависимости его КПД от температуры, поскольку во время работы СФЭУ поверхности их сильно нагреваются, что приводит к снижению энергетических показателей. Для охлаждения таких установок необходимо использовать воду.

В настоящее время СФЭУ с успехом используются в ряде стран мира, особенно в Японии, Германии и США.

По экспертным оценкам, вновь вводимая за год мощность СФЭУ в мире в 2005 г. составит 200 МВт, а в 2010 г. — 700 МВт при среднегодовом приросте около 25%.

Сегодня в России имеются достаточная научная база для развития фотоэнергетики и мощное промышленное производство, которое способно создавать любые современные СФЭУ.

Источник

Оцените статью