- Россияне научили аккумуляторы заряжаться за секунды
- Аккумуляторы станут лучше
- Два полимера и новый тип аккумулятора
- Конкурирующие разработки
- В Австралии создали аккумуляторы из алюминия и графена, которые заряжаются в 60 раз быстрее литийионных
- Аккумуляторы нового поколения
- Мобильные источники питания
- Кремний повышает емкость
- Эффективные аккумуляторы
- Хранение энергии
- Использование сил природы
- Биоаккумуляторы побеждают всех
- Зарядка без розетки
- Использование энергии радиоволн
Россияне научили аккумуляторы заряжаться за секунды
Российские ученые создали особый полимерный материал для катодов аккумуляторов, позволяющий сократить время их зарядки до нескольких секунд и одновременно повысить их плотность вместе с временем службы. АКБ с новыми катодами смогут проработать до 70 лет и при этом сохранить около трети своей емкости.
Аккумуляторы станут лучше
Российские специалисты из «Сколтеха», Российского химико-технологического университета им. Д. И. Менделеева (РХТУ) и Института проблем химической физики (ИПХФ) разработали новые материалы на основе полимеров для использования их в качестве катода в современных аккумуляторах. Как сообщили CNews представители РХТУ, исследователи протестировали их в составе особых литиевых двухионных батарей и на выходе получили сверхбыстрые АКБ, заряжающиеся за несколько секунд.
Использование новых катодных материалов не только привело к сокращению времени, уходящего на подзарядку аккумулятора, но и позволило значительно продлить срок его службы. Такие АКБ способны выдерживать до 25 тыс. циклов перезарядки.
По заявлениям авторов новой технологии, с использованием катодов на ее основе могут быть созданы еще и калиевые двухионные аккумуляторы, в которых дорогостоящий и очень неэкологичный (даже на этапе производства) литий заменен на более доступный и менее редкоземельный и токсичный калий.
Два полимера и новый тип аккумулятора
Специалисты РХТУ, ИПХФ и «Сколтеха» синтезировали сразу два новых разветвленных полимера – сополимер дигидрофеназина и дифениламина и сополимер дигидрофеназина и фенотиазина. Тесты показали, что первый полимер намного лучше справляется с поставленной задачей – именно он позволил добиться полной зарядки АКБ за несколько секунд. Кроме того, при его использовании батарея способна пережить до 25 тыс. циклов перезарядки и сохранить при этом до трети своей емкости. Специалисты подсчитали, что при обычных условиях эксплуатации такой аккумулятор мог бы служить до 70 лет.
В качестве анода ученые использовали металлический литий, но они также провели эксперимент и с калием. Батареи с анодом из этого материала и сополимером дигидрофеназина и фенотиазина в виде катода продемонстрировали повышенную плотность энергии – вплоть до 398 Втч/кг. Литиевые аккумуляторы с таким же катодом демонстрировали в 1,5-2 раза меньшую плотность – от 200 до 250 Втч/кг.
Материалы катодов, которые разработали исследователи, созданы на основе полимерных ароматических аминов. К их особенностям относится, помимо прочего, еще и возможность синтезировать их из различных органических соединений. Что касается двухионных АКБ, то в электрохимических процессах внутри них, в отличие от обычных литий-ионных батарей, задействованы как анионы, так и катионы электролита. Это напрямую влияет на многократный прирост скорости подзарядки.
«У нашей группы уже были работы по полимерным катодам для сверхбыстрых аккумуляторов с хорошей емкостью, которые можно заряжать и разряжать за несколько секунд. Среди прочих, раньше мы использовали линейные полимеры, у которых каждое мономерное звено образует связи только с двумя соседями, а в этой работе мы продолжили изучение новых разветвленных полимеров, у которых каждое звено может образовывать связи как минимум с тремя другими звеньями. Они формируют объемные сетчатые структуры, которые обеспечивают более быструю кинетику электродных процессов», – отметил первый автор работы, аспирант «Сколтеха», Филипп Обрезков. «С электродами из таких материалов аккумуляторы могут еще быстрее заряжаться и разряжаться», – добавил он.
Конкурирующие разработки
Авторы изобретения не уточнили, когда, по их прогнозам, может начаться массовое производство аккумуляторов, в которых используются созданные ими полимерные катоды. Между тем, в России существует целый ряд перспективных технологий, позволяющих улучшить современные элементы питания и способных составить конкуренцию детищу сотрудников РХТУ, ИПХФ и «Сколтеха».
Например, если эти ученые предлагают заменить литий на калий, то группа специалистов из Национального исследовательского технологического университета «МИСиС», Института биохимической физики им. Н.М. Эмануэля РАН и немецкого Центра им. Гельмгольца в Дрезден-Россендорфе считают, вместо лития следует использовать другой щелочной металл – натрий. CNews писал, что натрий в данном случае позволит снизить нагрузку на окружающую среду, поскольку добывать его проще, чем литий – он есть даже в обычной поваренной соли. Отсюда вытекает и снижение затрат на его добычу, а его применение в АКБ позволит сделать элементы питания более стабильными – литиевые аккумуляторы известны своей взрывоопасностью.
У специалистов «МИСиС» есть и еще одна альтернатива литиевым батареям, в которой нет ни натрия, ни калия – только сорняковое растение, в изобилии растущее во многих регионах России. Они предлагают делать не аккумуляторы, а суперконденсаторы с электродом из стеблей борщевика – для их превращения в углеродный материал, а затем и в электроды ученые разработали особую технологию их обработки, включающую воздействие на них соляной кислоты и насыщение углекислым газом.
Созданная технология преобразования борщевика в электроды суперконденсаторов была протестирована в лабораторных условиях, и эксперимент завершился успехом. Но, как и в случае с полимерными катодами и калиевыми АКБ за авторством ученых из РХТУ, ИПХФ и «Сколтеха», сроки коммерциализации этой идеи авторы не уточняют.
Источник
В Австралии создали аккумуляторы из алюминия и графена, которые заряжаются в 60 раз быстрее литийионных
Австралийская компания Graphene Manufacturing Group (GMG) из Брисбена на основе разработки Австралийского института биоинженерии и нанотехнологий Квинслендского университета (UQ) создала аккумуляторы, которые по многим параметрам выглядят намного лучше современных литиевых батарей. Это прорыв, говорят разработчики и обещают через год начать массовое производство новинки.
Источник изображения: Graphene Manufacturing Group
Новые аккумуляторы из алюминия и графена дешевле, не используют редкоземельных металлов, не горят, выдерживают колоссальные токи и широкий диапазон рабочих температур. Подобные перезаряжаемые элементы питания могут подтолкнуть далеко вперёд развитие электрического транспорта. Впрочем, для электромобилей алюминиево-ионные графеновые аккумуляторы компания GMG обещает начать выпускать только в 2024 году, тогда как со следующего года она запустит в производство аккумуляторы для других нужд.
Источник изображения: Graphene Manufacturing Group
Отчего так нескоро? В компании заявляют, что для выпуска алюминиево-ионных графеновых аккумуляторов для электромобилей необходимо создать элементы в стандартных формфакторах и со стандартными электрическими характеристиками, в частности — с таким же напряжением, как литийионные батареи. Пока же компания намерена выпускать революционные элементы в собственном формфакторе, который оптимизирован под фирменную технологию. Это не станет проблемой для выпуска целого спектра продукции на «алюминиевых» батареях, только бы компания сдержала своё обещание.
Источник изображения: Graphene Manufacturing Group
Катод алюминиево-ионной графеновой батареи представляет собой несколько слоёв перфорированного графена с порами примерно 2,3 нм. В поры уложены атомы алюминия, что делает материал довольно плотным с точки зрения возможности запасать энергию и способным пропускать намного большие токи, чем литийионные. Также следует учитывать, что каждый ион алюминия в процессе заряда обменивается на катоде на три электрона, тогда как ион лития обменивается только на один электрон.
Источник изображения: Graphene Manufacturing Group
Заявленные разработчиками токовые характеристики алюминиево-ионных графеновых аккумуляторов достигают 149 мА·ч/г и 5 А/г. По энергоёмкости «алюминиевые» батареи на 30–40 % хуже хороших современных литиевых батарей, но в три раза лучше лучших лабораторных образцов алюминиево-ионных аккумуляторов, которые прежде были разработаны в Стэнфордском университете. Австралийские аккумуляторы в нынешнем виде обещают удельную энергоёмкость до 160 Вт·ч/кг и мощность до 7000 Вт/кг.
Источник изображения: Graphene Manufacturing Group
Благодаря способности выдерживать большие токи разработчики называют свои батареи чуть ли не суперконденсаторами. Элемент типа «монетка» заряжается за несколько секунд в отличие от литиевых аналогов. С этих элементов, кстати, компания GMG рассчитывает начать коммерческое производство алюминийионных аккумуляторов в конце нынешнего года или в начале следующего. Что же, надеемся вскоре увидеть что-то новое и необычное на рынке аккумуляторов.
Источник
Аккумуляторы нового поколения
Новое поколение аккумуляторов в десять раз увеличит время работы мобильных устройств и сделает электромобили конкурентоспособными на рынке. В этой статье мы расскажем про самые перспективные разработки.
В отношении аккумуляторов действует правило «все или ничего». Без энергетических накопителей нового поколения не будет ни перелома в энергетической политике, ни на рынке электромобилей.
Закон Мура, постулируемый в IT-индустрии, обещает увеличение производительности процессоров каждые два года. Развитие аккумуляторов отстает: их эффективность увеличивается в среднем на 7% в год. И хотя литий-ионные батареи в современных смартфонах работают все дольше и дольше, это во многом связано с оптимизированной производительностью чипов.
Литий-ионные батареи доминируют на рынке из-за их малого веса и высокой плотности накапливаемой энергии.
Ежегодно миллиарды аккумуляторов устанавливаются в мобильные устройства, электромобили и системы для хранения электричества от возобновляемых источников энергии. Однако современная техника достигла своего предела.
Хорошей новостью является то, что следующее поколение литий-ионных батарей уже почти соответствует требованиям рынка. В качестве аккумулирующего материала в них применяется литий, который теоретически позволяет в десять раз увеличить плотность хранения энергии.
Наряду с этим приводятся исследования других материалов. Хотя литий и обеспечивает приемлемую плотность энергии, однако речь идет о разработках на несколько порядков оптимальнее и дешевле. В конце концов, природа могла бы предоставить нам лучшие схемы для высококачественных аккумуляторов.
Научно-исследовательские лаборатории университетов разрабатывают первые образцы органических аккумуляторов. Однако до выхода таких биобатарей на рынок может пройти не одно десятилетие. Мостик в будущее помогают протянуть малогабаритные батареи, которые заряжаются путем улавливания энергии.
Мобильные источники питания
По данным компании Gartner, в этом году будет продано более 2 млрд. мобильных устройств, в каждом из которых установлен литий-ионный аккумулятор. Эти аккумуляторы сегодня считаются стандартом, отчасти потому, что они весьма легкие. Тем не менее они обладают максимальной плотностью энергии только 150-200 Вт·ч/кг.
Литий-ионные батареи заряжаются и отдают энергию путем перемещения ионов лития. При зарядке положительно заряженные ионы двигаются от катода через раствор электролита между слоями графита анода, накапливаются там и присоединяют электроны тока зарядки.
При разрядке они отдают электроны в контур тока, ионы лития перемещаются обратно к катоду, в котором они вновь связываются с находящимся в нем металлом (в большинстве случаев — кобальтом) и кислородом.
Емкость литий-ионных аккумуляторов зависит от того, какое количество ионов лития может располагаться между слоями графита. Однако благодаря кремнию сегодня можно добиться более эффективной работы аккумуляторов.
Для сравнения: для связывания одного иона лития требуется шесть атомов углерода. Один атом кремния, напротив, может удерживать четыре иона лития.
Литий-ионный аккумулятор сохраняет свою элетроэнергию в литии. При зарядке анода атомы лития сохраняются между слоями графита. При разрядке они отдают электроны и перемещаются в виде ионов лития в слоистую структуру катода (кобальтит лития).
Кремний повышает емкость
Емкость аккумуляторов растет при включении кремния между слоями графита. Она увеличивается в три-четыре раза при соединении кремния с литием, однако после нескольких циклов зарядки графитовый слой разрывается.
Решение этой проблемы найдено в стартап-проекте Amprius, созданном учеными из Стэндфордского университета. Проект Amprius получил поддержку таких людей, как Эрик Шмидт (председателя совета директоров Google) и лауреат Нобелевской премии Стивен Чу (до 2013 года — министр энергетики США).
Пористый кремний в аноде увеличивает эффективность литий-ионных аккумуляторов до 50%. В ходе реализации стартап-проекта Amprius же произведены первые кремниевые аккумуляторы.
В рамках этого проекта доступны три метода решения «проблемы графита». Первый из них — применение пористого кремния, который можно рассматривать как «губку». При сохранении лития он крайне мало увеличивается в объеме, следовательно, слои графита остаются неповрежденными. Amprius может создать аккумуляторы, которые сохраняют до 50% больше энергии, чем обычные.
Более эффективно, чем пористый кремний, накапливает энергию слой кремниевых нанотрубок. В прототипах было достигнуто почти двукратное увеличение зарядной емкости (до 350 Вт·ч/кг).
«Губка» и трубки должны быть по-прежнему покрыты графитом, так как кремний вступает в реакцию с раствором электролита и тем самым уменьшает время работы аккумулятора.
Но есть и третий метод. Исследователи проекта Ampirus внедрили в углеродную оболочку группы частиц кремния, которые непосредственно не соприкасаются, а обеспечивают свободное пространство для увеличения частиц в объеме. Литий может накапливаться на этих частицах, а оболочка остается неповрежденной. Даже после тысячи циклов зарядки емкость прототипа снизилась только на 3%.
Кремний соединяется с несколькими атомами лития, но при этом расширяется. Для предотвращения разрушения графита исследователи используют структуру растения граната: они вводят кремний в графитовые оболочки, размер которых достаточно велик, чтобы дополнительно присоединять литий.
Эффективные аккумуляторы
Эффективность элементов питания напрямую связана с плотностью энергии химических веществ. График ниже показывает, что комбинации материалов, например, литий-сера или металл-воздух, значительно лучше аккумулируют энергию. Литиево-серные (LiS) аккумуляторы обеспечивают усовершенствование катода: сера в катоде, так же как и кремний в аноде, может накапливать больше лития.
В следующем поколении аккумуляторов используются сера и цинк. Большим потенциалом обладают только биоаккумуляторы.
Ранее разработанные LiS-прототипы со значением 350 Вт·ч/кг обеспечивают большую плотность энергии, чем литий-ионные аккумуляторы, однако они тоже не достигли предела. На пути увеличенной эффективности стоят две проблемы: теоретическая плотность энергии на практике может быть достигнута только в том случае, если использовать в аноде чистый литий.
Сера может хранить больше лития в катоде, что увеличивает плотность энергии. Литий-серные аккумуляторы (разработка университета Беркли) дополнительно используют оксид графена как переносчик энергии и дезинфицирующее средство (СТАВ) в качестве защитного слоя.
Сера может хранить больше лития в катоде, что увеличивает плотность энергии. Литий-серные аккумуляторы (разработка университета Беркли) дополнительно используют оксид графена как переносчик энергии и дезинфицирующее средство (СТАВ) в качестве защитного слоя.
Это затруднительно, так как он реагирует с электролитом. Однако то же самое делает и сера, а именно — ионы полисульфида, которые подобным же образом перемещаются к аноду и там разлагают литий или осаждаются в форме сульфида лития Li2S. Такой аккумулятор выдерживает лишь небольшое число циклов зарядки.
Команде исследователей общества Фраунгофера под руководством профессора Хольгера Альтуэса удалось «защитить» серу. Они «обернули» ее углеродной оболочкой и использовали аналогичную оболочку на аноде. Прототип выдержал две тысячи циклов зарядки.
К 2020 году Альтуэс ожидает выхода на рынок LiS-аккумуляторов с плотностью энергии около 600 Вт·ч/кг, что примерно втрое превышает значения литий-ионных аккумуляторов.
Хранение энергии
Химическую реакцию лития с кислородом используют металл-воздушные аккумуляторы: при разрядке атомы металла в аноде реагируют с кислородом воздуха и выделяют электроны. Затем они перемещаются через электролит в форме ионов к катоду. Потенциальная плотность энергии (1100 Вт·ч/кг) намного превышает значения литий-ионных аккумуляторов.
Цинково-воздушные батареи применяются уже давно, однако цинк разрушается при разрядке. Чтобы этого не происходило в аккумуляторах, во время подзарядки кислород на катоде должен быть удален.
Таким образом из ионов металла вновь возникает цинк. Кроме того, требуется особый катализатор, такой как раствор калия, в качестве защиты от воздуха для цинкового электрода с целью предотвращения его нежелательного окисления.
В стартап-проекте Imprint Energy разработаны даже готовые к печати аккумуляторы с полимерным катализатором, которые благодаря своей гибкости превосходно подходят для малогабаритных устройств.
Поскольку для цинково-воздушных аккумуляторов требуется постоянный обмен воздуха, они мало пригодны для мобильных устройств, однако в будущем смогут использоваться в электромобилях, тем более что они не содержат горючих материалов. Накопленная энергия едва ли уменьшается в течение десятилетий, что делает эти аккумуляторы весьма интересными.
Использование сил природы
В современных аккумуляторах электроны испускают только твердые материалы. Но существует также концепция окислительно-восстановительного потока или жидкостных ячеек: две растворенные соли металлов перемещаются рядом в отдельных контурах. Они приводятся в движение с помощью насосов и соприкасаются на проницаемой мембране. Происходит ионообмен, а ячейка разряжается и вновь заряжается при подаче тока.
Такая система имеет смысл для применения в электромобилях: вместо того, чтобы тратить многие часы на зарядку автомобиля от розетки, его можно заправить, как это делается сегодня с применением бензина. При этом необходимо просто заменить отработанную жидкость новой, после чего жидкостный аккумулятор будет вновь заряжен.
Автомобиль Quant массой 2,3 т приводится в действие от 400-литровой жидкостной ячейки и якобы предлагает дальность поездки около 600 км.
На Женевском автосалоне в 2014 году был представлен подобный автомобиль (Quante), дальность поездки которого якобы составляет 600 км, однако данные получены только в процессе моделирования. Ответы на проблемы материалов жидкостных ячеек до сих пор могут дать только исследовательские лаборатории.
В Массачусетском технологическом институте разработана жидкостная ячейка без мембраны, в которой две жидкости в процессе ионообмена не смешиваются при ламинарном течении. Благодаря этому исследователи смогли работать с бромом, который во время разрядки восстанавливается до бромоводорода. Использование брома позволит еще вдвое увеличить плотность энергии ванадиево-жидкостной ячейки.
Аккумуляторы, действующие на принципе окислительно-восстановительного потока (разработка Гарвардского университета), достигают восьмикратной плотности энергии по сравнению с жидкостными ячейками. Для этого они используют AQDS (антрахинон-дисульфонат) и бромид, получаемые из ревеня. Электроды освобождаются и заряжаются путем обмена ионами водорода.
Биоаккумуляторы побеждают всех
Органические вещества очень хороши в качестве энергоносителей. Они недороги и, как правило, не ядовиты. Исследователи Гарвардского университета разработали жидкостную ячейку, извлекающую энергию хранения из антрахинона-дисульфоната (AQDS) — составной части ревеня. Однако они не могут отказаться от использования брома.
Аккумулятор, разработанный в Виргинском техническом колледже, в качестве накопителя энергии использует сахар (мальтодекстрин), который разрушается ферментами при разрядке. В нем достигается примерно десятикратная плотность энергии по сравнению с литий-ионными моделями.
Пока неясно, сможет ли выдержать биоячейка несколько тысяч циклов зарядки, однако барьер в несколько сотен циклов она уже преодолела.
Настолько же эффективно, как и «ревеневая ячейка», действует сахарно-воздушный аккумулятор (разработка специалистов Политехнического университета Виргинии). Плотность энергии в подобной системе почти в десять раз превышает значения современных литий-ионных аккумуляторов.
Анод из мальтодекстрина плавает в растворе различных ферментов, которые постепенно разрушают его, освобождая при этом электроны. Руководители исследовательской группы прогнозируют возможность применения «сахарных» аккумуляторов в мобильных устройствах уже через три года, однако подобные прогнозы в отношении биоаккумуляторов впоследствии оказываются малореалистичными.
Так, компания Sony еще семь лет назад заявила о разработках в области биоаккумуляторов, но с тех пор мало что произошло. Опыт показывает, что для разработки чудо-батарей требуется довольно много времени.
Зарядка без розетки
В будущем электроэнергию для смартфонов можно будет вырабатывать даже посреди лесной глуши. Исследователи из США и Китая разработали крошечные генераторы, которые способны использовать для зарядки даже самые слабые вибрации. Эти устройства состоят из поливинилиденфторида (PVDF) — материала, генерирующего ток при давлении и деформации. Как правило, фторопласты используются для уплотняющих покрытий и фильтров, а также находят применение в динамиках и микрофонах.
Новые процессоры поглощают энергию радиоволн и обмениваются при этом сообщениями, они не нуждаются в электроэнергии
Для производства генераторов в полимерную массу вводят частицы оксида цинка, которые затем растворяют соляной кислотой. В результате остается губчатая структура, изготовленная из мягкого и гибкого материала с крупными отверстиями, являющаяся чрезвычайно чувствительной к колебаниям всех видов.
Наногенераторы на базе PVDF подходят для любого современного смартфона
В конце производственного процесса получается PVDF-пленка, на которую с обеих сторон наносится тонкая медная фольга в качестве электродов. Если наногенераторы устанавливаются на смартфон, достаточно, чтобы устройство во время поездки просто лежало на пассажирском сиденье. Вибрации заряжают аккумулятор: при частоте колебаний 40 Гц прототип достиг пиковых значений 11 В и 9,8 микроампер.
Использование энергии радиоволн
Эксперты прогнозируют, что до 2020 года более 50 млрд миниатюрных устройств будут взаимодействовать друг с другом. Исследователи Вашингтонского университета разработали беспроводную коммуникационную систему, использующую энергию телевизионных сигналов и сигналов мобильной связи. Хотя КПД и невысок, однако достаточен для передачи сообщений.
В ходе тестов система отправляла до 1000 бит в секунду и использовала для этого волны ТВ-передатчиков, расположенных на расстоянии от 800 м до 11 км.
Аккумуляторы для элементов автомобиля
В электромобилях или гибридных машинах аккумуляторы обычно располагаются в багажнике. Европейский исследовательский проект StorAGE хочет устранить этот недостаток,
и Volvo в качестве участника данного проекта представила решение.
Производитель разработал легкие аккумуляторы. Их электроды из углеродных волокон окружают углеродные нанотрубки, покрытые литием. Вся конструкция заливается полимерной смолой, а в качестве изолирующего слоя применяется стекловолоконный холст.
Аккумулятор получается настолько плоским, гибким и прочным, что его можно использовать в качестве несущей конструкции автомобиля.
Также с каждым движением тела мы производим небольшое количество энергии, которая может быть преобразована в ток. Генератор на колесе велосипеда — лучший пример. Было бы неплохим вариантом использовать эту энергию для подзарядки смартфона. В технологическом институте Джорджии (Атланта) исследователи изобрели генератор, который вырабатывает электричество из трения.
Он состоит из четырех плоских дисков, расположенных друг над другом. Три из них смонтированы неподвижно и выглядят как слои торта, к ним прикреплены электроды. Над ними перемещается медный диск. Когда ротор трется по расположенному под ним «куску торта» с покрытием из золота, возникает напряжение, благодаря чему генератор непрерывно вырабатывает переменный ток и обеспечивает мощность до 1,5 Вт.
Все устройство невелико и помещается в кармане: при диаметре 10 см и объеме 0,6 см 3 его вес составляет1,1 г. В будущем у нас всегда будет под руками источник питания — стоит лишь немного потереть его.
Фотографии в статье: Eliza Grinnell/Harvard School of Engineering and Applied Sciences; Lawrence Berkeley National Laboratory, Imprint Energy, Inc.; Nanoflowcell; Sensor Systems Laboratory/University of Washington; Xudong Wang; Volvo
Источник