Научная работа солнечные батареи

Научная работа солнечные батареи

Что самое страшное для современного человека? Пожалуй, что остаться без электричества, телефонной (сотовой) и интернет-связи. Без электричества немыслима жизнь современного общества, ведь от него зависит всё на нашей планете: работа фабрик, заводов, котельных, радио- и телепередающих центров, магазинов и других объектов инфраструктуры.

Для выработки и получения электричества изпользуют энергию воды, энергию ветра и, конечно, энергию солнца!

Любой свет, передающийся от источника освещения, вызывают элементарные частицы – фотоны. Энергия фотонов частично поглощается металлами, которые, в свою очередь, выбрабатывают и выбрасывают электроны. Это явление получило название фотоэлектрический эффект, или — фотоэффект. Прямое преобразование световой энергии солнца в электрическую энергию, называется фотовольтаика. Именно эти процессы и легли в основу создания солнечных батарей!

Еще в древности люди начали задумываться о возможностях применения солнечной энергии. Согласно легенде, великий греческий ученый Архимед сжег неприятельский флот, осадивший его родной город Сиракузы, с помощью системы зажигательных зеркал. Доподлинно известно, что около 3000 лет назад султанский дворец в Турции отапливался водой, нагретой солнечной энергией. Древние жители Африки, Азии и Средиземноморья получали поваренную соль, выпаривая морскую воду. Однако больше всего людей привлекали опыты с зеркалами и увеличительными стеклами. Настоящий “солнечный бум” начался в XVIII столетии, когда наука, освобожденная от пут религиозных суеверий, пошла вперед семимильными шагами. Первые солнечные нагреватели появились во Франции. Естествоиспытатель Ж. Бюффон создал большое вогнутое зеркало, которое фокусировало в одной точке отраженные солнечные лучи. Это зеркало было способно в ясный день быстро воспламенить сухое дерево на расстоянии 68 метров. Вскоре после этого шведский ученый Н. Соссюр построил первый водонагреватель. Это был всего лишь деревянный ящик со стеклянной крышкой, однако вода, налитая в немудреное приспособление, нагревалась солнцем до 88°С. В 1774 году великий французский ученый А. Лавуазье впервые применил линзы для концентрации тепловой энергии солнца. Вскоре в Англии отшлифовали большое двояковыпуклое стекло, расплавлявшее чугун за три секунды и гранит – за минуту. Но всё это демонстрирует лишь превращение энергии солнца в тепловую энергию, а сами эти преобразователи называются солнечными коллекторами! Это «двоюродные» братья солнечных батарей!

Читайте также:  Стадион с солнечными батареями

История солнечных батарей берет свое начало с первой половины XIX века. В 1839 году было открыто лежащее в ее основе явление фотоэлектрического эффекта. Но тем не менее с тех пор прошло более ста лет, прежде чем произошло первое преобразование энергии света в электричество.

Современные фотоэлектрические солнечные панели представляют собой тонкие кремниевые пластины, которые преобразуют солнечный свет в электричество. Производство солнечных батарей сегодня как никогда актуально, т.к. они выступают в качестве источников энергии в широком спектре областей, в том числе в телекоммуникационной, космической отраслях, медицине, связи, микроэлектронике и т.п. Солнечные батареи в виде больших массивов используются в различных спутниках и солнечных электростанциях.

Первый фотоэлектрический элемент был создан в 1839 году 19-ти летним французом Эдмоном Беккерелем, впоследствии ставшим известным физиком. Он поместил хлорид серебра в кислый раствор, налитый в стеклянную колбу, ввел в нее электроды из платины и поставил на свет. Эдмон выяснил, что по электродам из колбы поступает слабый ток, но ему не удалось определить точный механизм этого процесса.

В 1873 году английский инженер Смит Уиллоуби описал фотопроводимость селена. Но сам факт существования фотоэффекта в 1887 году окончательно утвердил физик Генрих Герц. Экспериментируя с открытым конденсатором немецкий ученый установил его приемник в черную коробку, чтобы лучше различать появление искры, однако в темноте ее длина оказалась по каким-то причинам меньше. Пытаясь выяснить, что же влияет на длину искры, Герц решил осветить прибор ультрафиолетом и конденсатор стал испускать более длинные искры за меньшее время.

Первую в истории солнечных батарей ячейку, основанную на внешнем фотоэффекте, создал в 1888 году Александр Григорьевич Столетов. Явление фотоэффекта в 1905 году объяснил Альберт Эйнштейн, предположив, что свет может существовать лишь как пучок квантов.

До середины XX века ряд компаний занимались изучением фотоэлементов, пытаясь достичь более высокого коэффициента полезного действия (КПД), чем у селеновых ячеек – их производительность не превышала 0,5%. В СССР солнечную энергетику исследовали в Физико-техническом институте Борис Тимофеевич Коломиец и Юрий Петрович Маслаковец, под руководством академика Абрама Федоровича Иоффе. Созданные ими фотоэлектрические преобразователи показали высокий на тот момент – середина 30-х годов – коэффициент производительности, равный 1%. Несколькими годами позже значительного успеха достигла американская Bell Laboratories – КПД ее кремниевых ячеек составил 6%, правда, в лабораторных условиях.

25 апреля 1954 года газета «Нью-Йорк Таймс» на первой полосе поместила материал о сенсационном достижении ученых. Через некоторое время была достигнута эффективность 11%, и в 1955 году эти элементы были применены в качестве источника питания для телефонных усилителей. Совершенствовалась технология изготовления фотоэлементов, и вот уже в 1958 году в США, а через два месяца в СССР на орбиту вокруг Земли выводятся спутники, аппаратура которых частично питается от солнечных батарей. Но существовавшие на то время топливные системы и аккумуляторные батареи имели слишком большой вес.

В настоящее время производимые солнечные батареи пока не могут полностью удовлетворить потребности в энергии, но они стали основным источником энергии для обеспечения искусственных спутников Земли.

Солнечные батареи имеют большее значение соотношения вырабатываемой энергии к весу, чем все другие традиционные источники энергии, и являются экономически более эффективными.

Пока количество установленных крупномасштабных энергетических фотоэлектрических систем невелико. Большинство усилий направлено на обеспечение с их помощью электроэнергией отдаленных и труднодоступных мест. Мощность ежегодно устанавливаемых солнечных электростанций составляет около 50 мегаватт. Но солнечные батареи обеспечивают лишь около 1 % всей производимой в настоящее время электроэнергии. Сторонники солнечной энергетики утверждают, что количество солнечного излучения, достигающего поверхности Земли каждый год, могло бы легко обеспечить потребности в энергии несколько раз. Но история создания солнечных батарей должна пройти длинный путь, прежде чем осуществить мечту Чарльза Фриттса по получению бесплатной и доступной солнечной энергии.

В тех странах, которые находятся ближе к экватору и где количество ясных солнечных дней достаточно велико, применение солнечных батарей как никогда оправдывает себя! В Америке, Азии, Европе, Австралии и развитых странах Африки, уже многие годы энергия, получаемая и вырабатываемая при помощи солнечных батарей, используется в быту и на производственных предприятиях! Существуют целые поселки, твенным источником электроэнергии для которых служит энергия, получаемая от солнечных батарей! Этой энергии хватает для работы холодильников, стиральных машин, телевизоров, микроволновых печей, освещения и других потребителей электроэнергии, находящихся в распоряжении местных жителей в пределах таких поселков.

Приятно видеть то, что и в южных районах Российской Федерации последние годы все больше многоквартирных домов и коттеджей оснащаются солнечными батареями. Пусть они способны вырабатывать лишь часть необходимой для бытовых нужд электроэнергии, но это правильная тенденция!

Изучить практическую сторону применения солнечных батарей в повседневной жизни

С помощью солнечной батареи (панели) создать в бытовых условиях зарядное устройство для телефона.

Внимательно изучив историю создания и развития солнечных батарей, я обратил пристальное внимание на устройство повседневной необходимости — на Power Bank .

Очень часто случается так, что батарея смартфона или планшета разряжается в самый не подходящий момент, а подзарядить её в дороге, в походе, на природе, в деревне или в лесу у многих нет возможности. Разумеется, можно купить один или два запасных аккумулятора и сменить их в случае крайней необходимости, но более уместно подзарядится от мобильного источника питания, именуемого Power Bank .

Power Bank — это устройство для накопления и хранения энергии (предварительно полученной из электрической сети или от солнечного света), за счет одного или пары аккумуляторов в небольшом корпусе. Так же его часто называют УМБ (универсальная мобильная батарея) или портативное зарядное устройство. Основное предназначение данного устройства – передавать электрический заряд смартфону, планшету или иной портативной электронике через USB кабель. На сегодня представлена масса производителей УМБ: Yoobao , Drobak , TP — LINK , но лидером считается Xiaomi , ввиду хорошего соотношения цены и качества.

Основное отличие любого УМБ – тип и емкость встроенной батареи измеряемого в миллиампер-часах (мАч), от чего очень варьируется форма, размеры и вес. В продаже можно встретить устройства от 500 до 20 000 и более мАч, размерами от губной помады до цифрового фотоаппарата или GPS -навигатора. Наиболее популярный тип аккумуляторов – литий-ионный ( Li — Ion ) типоразмера 18650, но иногда могут встречаться и литий-полимерные ( Li — Pol ), по типу тех, что применяются в смартфонах и планшетах.

Для контролирования уровня заряда или информации о процессе зарядки, каждый УМБ снабжен LED индикатором или ЖК-дисплеем. Второй вариант куда удобнее и информативнее, но встречается очень редко, преимущественно в дорогих устройствах. Чаще всего производители используют LED индикацию на 3-5 диодов, а иногда ограничиваются двумя. В последнем случае узнать остаток энергии невозможно, только когда батарея зарядилась или полностью села.

Для зарядки мобильной аппаратуры используется один или два USB порта, с одинаковой или разной силой тока, например 1А и 2А. Первый рационально использовать для телефонов и смартфонов, тогда как второй для планшетов или устройств, поддерживающих технологию быстрой зарядки.

В качестве материала корпуса чаще всего используют пластик, реже сплав на основе алюминия. Довольно распространена тенденция установки небольшого фонарика, а иногда можно встретить Power Bank со встроенной солнечной панелью, что ещё больше уменьшает зависимость от розетки, особенно вдали от дома. Именно это — использование солнечной батареи для зарядки мобильного телефона — вызвало у меня огромный интерес к данной теме!

И так. когда я был на даче, вдали от дома, благ и цивилизации, мне попался в руки обычный садовый фонарик (светильник) «на солнечной батарее».

Я разобрал его, отделив солнечный элемент от корпуса и отсоединив провода. Всё остальное, что входило в состав фонарика, включая аккумулятор, светодиод (источник света), я отложил в сторону.

Затем я взял зарядное устройство от своего смартфона с разъемом micro — USB и обрезал его на расстоянии, примерно 10 см от разъема.

Затем я соединил провода от солнечной батареи с проводами отрезанного мной кусочка кабеля зарядного устройства (части с разъемом).

Угадать полярность с первого раза у меня не получилось. Я действовал последовательно, методом перебора, подсоединяя провода и обращая к свету солнечную батарею.

Наконец, когда я угадал нужную пару проводов, мой телефон начал заряжаться от солнечного света!

После этого, я аккуратно заизолировал провода в месте их состыковки изоляционной лентой.

Затем я поместил провода внутрь термоусадочной трубки, нагрел её при помощи спичек, и у меня получился аккуратный провод.

В оконцовке, я приклеил солнечную панель к чехлу своего смартфона на двухсторонний скотч.

Теперь меня не пугает отсутствие розеток. Я могу спокойно отправляться в поход, на сплав, в горы не боясь, что мой телефон разрядится!

Признаюсь, что мне досталась не достаточно мощная батарея, поэтому для эффективной работы моего изобретения необходим достаточно яркий свет. Или можно заменить солнечную батарею (панель) на более мощную и производительную, купив ее в специализированном магазине.

Я использую энергию солнца, чтобы заряжать свой телефон. А Вы?!

На мой взгляд, значение и возможности солнечных батарей ещё не до конца оценены в современном обществе. Я считаю, что за ними большое будущее!

Не за горами то время, когда солнечные батареи будут вырабатывать электричество в каждом офисе, в каждом доме, в каждой квартире. Они будут обеспечивать электроэнергией производственные предприятия, медицинские учреждения, научно-исследовательские и проектные институты и т.д.

Конечно же, необходимо отметить то, что широкое распространение солнечные батареи получат в тех регионах, где много ясных солнечных дней.

В условиях повышенной облачности и, в частности, в пасмурную погоду, когда небо затянуто тучами, эффективность работы солнечных батарей снижается в десятки раз.

Но, я думаю, эти проблемы будут решены в обозримом будущем. Ученые, применяя все более совершенные материалы и технологии, будут способны увеличить КПД солнечных батарей!

Источник

НИР «Солнечные батареи»

Автор: Рутенберг Анна, ученица 8 класса ЧОУ «ГАРМОНИЯ»

Научный руководитель: Муравьёва А.А., учитель физики ЧОУ «ГАРМОНИЯ»

Цель работы: изучить солнечные батареи как средство преобразования солнечной энергии в электрическую.

Методы исследования:теоретический (анализ, обобщение); эмперический (эксперимент, измерение).

В работе рассмотрен принцип действия солнечных батарей, с помощью Интернет-источников изучена область применения солнечных батарей.
В эмперической части работы проведены эксперименты с калькуляторами, содержащими солнечные панели, с солнечными батареями (зависимость получаемого напряжения от угла наклона источника, от высоты источника, от площади батарей), полученные данные проанализированы, результаты представлены в виде таблиц и графиков.

Скачать:

Вложение Размер
chou_garmoniya_nir_po_fizike_-_-_solnechnye_batarei.docx 353.88 КБ
rutenberg_anna_-_solnechnye_batarei.pdf 2.71 МБ

Предварительный просмотр:

Частное общеобразовательное учреждение

Автор: Рутенберг Анна,

ученица 8 класса

Муравьёва Анастасия Александровна,

учитель физики ЧОУ «ГАРМОНИЯ»

СОДЕРЖАНИЕ
ВВЕДЕНИЕ………………………………………………………………………..3
ГЛАВА 1СОЛНЕЧНАЯ БАТАРЕЯ КАК ПРЕОБРАЗОВАТЕЛЬ ЭНЕРГИИ СОЛНЦА
§1 Принцип действия солнечных панелей……………………………………. 5
§2 Использование солнечных батарей…………………………………………11
ГЛАВА 2 ЭКСПЕРИМЕНТ С СОЛНЕЧНЫМИ БАТАРЕЯМИ
§1 Описание эксперимента………………………………………………….…..16
§2 Анализ полученных данных…………………………………………..….….17
ЗАКЛЮЧЕНИЕ…………………………………………………………. ……..25
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ И ИНТЕРНЕТ-РЕСУРСОВ……………………………………………………………………. 26

Актуальность. Без энергии жизнь человечества немыслима. Все мы привыкли использовать в качестве источников энергии органическое топливо – уголь, газ, нефть. Однако их запасы в природе, как известно, ограничены. И рано или поздно наступит день, когда они иссякнут. На вопрос «что делать в преддверии энергетического кризиса?» уже давно найден ответ: надо искать другие источники энергии – альтернативные, нетрадиционные, возобновляемые. Всевозможные гелиоустановки используют солнечное излучение как альтернативный источник энергии. Излучение Солнца можно использовать как для нужд теплоснабжения, так и для получения электричества (используя фотоэлектрические элементы в составе солнечных батарей). Поэтому актуальна тема нашей работы: «Солнечные батареи».

Проходя сквозь атмосферу Земли, солнечное излучение теряет в энергии примерно 370 Вт/м 2 , и до земной поверхности доходит только 1000 Вт/м 2 (при ясной погоде и когда Солнце находится в зените). Эта энергия может использоваться в различных естественных и искусственных процессах. Так, растения с помощью фотосинтеза перерабатывают её в химическую форму (кислород и органические соединения). Прямое нагревание солнечными лучами или преобразование энергии с помощью фотоэлементов может быть использовано для производства электроэнергии (солнечными электростанциями) или выполнения другой полезной работы. Путём фотосинтеза была в далёком прошлом получена и энергия, запасённая в нефти и других видах ископаемого топлива.

Цель работы : изучить солнечные батареи как средство преобразования солнечной энергии в электрическую.

Для достижения поставленной цели необходимо выполнить следующие задачи:
1. Познакомиться с принципом действия солнечных батарей.
2.Изучить область применения солнечных батарей.
3. Провести эксперименты с солнечными батареями, проанализировать полученные данные.

ГЛАВА 1СОЛНЕЧНАЯ БАТАРЕЯ КАК ПРЕОБРАЗОВАТЕЛЬ ЭНЕРГИИ СОЛНЦА
§1 Принцип действия солнечных панелей

Растения улавливают энергию солнечного света и используют её для превращения воды и углекислого газа в простой сахар (глюкозу). Это топливо для растений, полученное с помощью солнца. Преобразовывать солнечный свет в энергию могут не только растения, лучи солнца можно превращать в электричество с помощью солнечных батарей. Из чего собственно сделана эта батарея? И как она превращает солнечный свет в самое настоящее электричество? Основа солнечной батареи кристалл чистого кремния, в природе кремний встречается только в виде песка, поэтому цилиндры из кремния выращивают искусственно, затем придают форму куба и режут на пластины толщиной всего в 180 микрон ─ это примерно 3 человеческих волоса. На кремниевую пластину наносят небольшое количество бора и фосфора.

Добавленные атомы фосфора называют донорной примесью. В слое кремния с добавками фосфора возникают свободные электроны ( полупроводникn-типа ).

Донорные примеси ─ атомы химических элементов, внедренные в кристаллическую решетку полупроводника и создающие дополнительную концентрацию электронов. Донорными примесями являются химические элементы, внедренные в полупроводник с меньшей, чем у примеси, валентностью.

Добавленные атомы бора называют акцепторной примесью. В слое кремния с добавками бора возникают отсутствующие электроны, так называемые «дырки» ( полупроводник p-типа ).

Акцепторные примеси ─ атомы химических элементов, внедренные в кристаллическую решетку полупроводника и создающие дополнительную концентрацию дырок. Акцепторными примесями являются химические элементы, внедренные в полупроводник с большей, чем у примеси, валентностью.

Солнечная батарея является полупроводниковым источником тока, непосредственно преобразующим энергию солнечного излучения в электрическую. Действие солнечных элементов основано на использовании явления внутреннего фотоэффекта в области p-n перехода двух полупроводников.( Внутренний фотоэффект ─ увеличение под действием света электропроводности полупроводников. Полупроводники ─ вещества, в которых концентрация подвижных носителей заряда значительно ниже, чем концентрация атомов, и может изменяться под влиянием температуры, освещения или относительно малого кол-ва примесей, Это значит, что в полупроводниках ток возникает, в отличие от проводников, только под влияние определённых факторов). Под действием света по обе стороны от p-n перехода растёт концентрация электронов и дырок. При этом электрическое поле в области p-n перехода перемещает электроны из полупроводника p -типа в полупроводник n -типа, а дырки – в противоположном направлении. В результате, увеличивается разность потенциалов между этими полупроводниками, и в цепи появляется ток

Фотон и его свойства

Фотон ─ материальная, электрически нейтральная частица, квант электромагнитного поля (переносчик электромагнитного взаимодействия).

Основные свойства фотона

  • Является частицей электромагнитного поля.
  • Движется со скоростью света.
  • Существует только в движении.

Остановить фотон нельзя: он либо движется со скоростью, равной скорости света, либо не существует; следовательно, масса покоя фотона равна нулю.

При направленном солнечном свете электричество собирается в каждой точке кремниевой пластинки. Чтобы вывести ток с пластины, нужны дорожки «каналы», по ним и бежит электричество, одной маленькой пластины хватит на работу небольшого карманного фонарика. Когда пластины соединяются, мощность батареи увеличивается, чем больше батарея, тем она мощнее[2].

Для увеличения выходных параметров (тока, напряжения и мощности) солнечные элементы (пластины), из которых состоит солнечная батарея, соединяются последовательно и параллельно. При последовательном соединении элементов увеличивается выходное напряжение, при параллельном – выходной ток. Для того, чтобы увеличить и ток и напряжение комбинируют два этих способа соединения. Кроме того, при таком способе соединения выход из строя одного из солнечных элементов не приводит выходу из строя всей цепочки, т.е. повышает надежность работы всей батареи.

Таким образом, солнечная батарея состоит из параллельно-последовательно соединенных солнечных элементов. Величина максимально возможного тока отдаваемого батареей прямо пропорциональна числу параллельно включенных, а э.д.с. — последовательно включенных солнечных элементов. Так комбинируя типы соединения собирают батарею с требуемыми параметрами. Оказывается, что фотоэлементы могут работать от любого источника света, не только от солнечного. Батареи укладывают на стол, подключают клеммы и подают свет. Если напряжение есть, значит цепочка из пластин собрана правильно. Осталось поместить солнечные элементы в герметичную пленку и положить под стекло, пропускающее ультрафиолет. Солнечные батареи можно установить где угодно. Солнечный свет есть всегда, даже если на улице пасмурно, батареи все равно получают энергию, пусть и не в полную силу.

Получаемая электрическая энергия накапливается в аккумуляторах, а затем отдается в нагрузку. Аккумуляторы – химические источники тока. Заряд аккумулятора происходит тогда, когда к нему приложен потенциал, который больше напряжения аккумулятора.

Число последовательно и параллельно соединенных солнечных элементов должно быть таким, чтобы рабочее напряжение подводимое к аккумуляторам с учетом падения напряжения в зарядной цепи немного превышало напряжение аккумуляторов, а нагрузочный ток батареи обеспечивал требуемую величину зарядного тока.

Например, для зарядки свинцовой аккумуляторной батареи 12 В необходимо иметь солнечную батарею состоящую из 36 элементов.

При слабом солнечном свете заряд аккумуляторной батареи уменьшается и батарея отдает электрическую энергию электроприемнику, т.е. аккумуляторные батареи постоянно работают в режиме разрядки и подзарядки.

Виды солнечных элементов

Существует несколько разновидностей солнечных элементов, которые отличаются структурой рабочей поверхности фотоэлемента и технологией изготовления.

  1. Фотоэлементы с использованием аморфного кремния . По-другому их еще называют пленочными покрытиями. С развитием нано технологий это направление, возможно, станет более перспективным, но пока такие панели не имеют большого промышленного производства. Сложность заключается в создании у кристаллов кремния одинаковой направленности по всей толщине рабочего слоя, который составляет 80−100 микрон.
  2. Фотоэлементы с использованием монокристаллического кремния. Самые дорогостоящие и производительные батареи, способны удовлетворительно работать при сильной облачности. Их изготавливают, используя медленное остывание кремниевого расплава. При этом получается слиток, который с одной стороны является монокристаллом, а с другой стороны — однороден. После остывания слиток разрезается на пластины и для создания нужной структуры поверхности его подвергают нескольким видам термообработки. Цвет таких пластин обычно темно-синий.
  3. Фотоэлементы с использованием поли- или мультикристаллического кремния. При производстве используется технология получения центров кристаллизации, и, как следствие, небольших кристаллов в слитке. Термообработку эти пластины проходят ту же, что и монокристаллические, но их электротехнические показатели первых значительно уступают вторым. Зато и цена на них существенно ниже. Внешне их можно отличить по наличию участков, различающихся по оттенкам и очертаниям.

Распространены два вида фотоэлектрических преобразователей (солнечных элементов): сделанные из монокристаллического и поликристаллического кремния. Первые имеют кпд до 17,5%, а вторые – 15% (по некоторым источникам: кпд до 24% из монокристаллического кремния, кпд до 20% из поликристаллического кремния).

Преимущества и недостатки солнечных батарей

  • Общедоступность и неисчерпаемость источника энергии
  • Экологическая безопасность
  • Длительный срок службы
  • Независимость от цен на топливо
  • Бесшумность
  • Генерируемая энергия фактически является бесплатной (после того, как солнечная энергосистема окупится)
  • Модульность
  • Высокая стоимость (= длительный срок окупаемости )
  • Недостаточный КПД
  • Зависимость от погодных условий
  • Неприменимость для приборов, потребляющих большую мощность
  • Использование дополнительного оборудования (аккумуляторов, инверторов и т. д.)
  • Наличие ядовитых веществ в составе фотоэлементов (свинца, кадмия, галлия, мышьяка и т. д.) + применение токсичных веществ при их производстве → проблема утилизации

§2 Использование солнечных батарей

Областей применения солнечных батарей становится все больше с каждым днем. Эти устройства с успехом проявляют себя в сфере промышленности, сельского хозяйства, военно-космических отраслях и даже в быту.

К сожалению, линии электропередач, опутавшие большую часть нашей планеты, всё ещё не могут добраться в самые труднодоступные уголки, которые подключать к ресурсам электростанций оказывается дороже, чем установить солнечную батарею, преобразующую в электроэнергию обычный дневной свет.

Солнечные батареи обеспечивают электроэнергией прибайкальскую метеостанцию

Устанавливать электростанцию на жидком или твердом топливе оказывается дороже и ущербнее для окружающей экологии, чем использовать солнечные батареи. Чаще всего ими укрывают крыши домов, так что в солнечный день они вырабатывают электричество, которого достаточно и для освещения и работы бытовых устройств. А специальный проект в Испании оказался ещё успешнее. Из экономических соображений ряд современных домов был оборудован солнечными батареями, энергия которых используется для нагрева воды [5].

Дом с солнечными батареями на крыше не подвержен перепадам в электросети

Аргументов в пользу солнечных электростанций не счесть, но основным из них является экологичность. Примером, где отсутствие вредных выбросов солнечными батареями в окружающую среду сделало их альтернативой традиционными источникам электроэнергии, стала солнечная электростанция, расположенная недалеко от испанского местечка Севильи. Солнечные батареи водрузили на башню, на которую направили зеркала, отражающие и фокусирующие свет. Довольными остались около 10 тысяч близлежащих домохозяйств, которые снабжаются электроэнергией, преобразованной из света от солнца.

Самая крупная солнечная электростанция в Испании имеет мощность в 20 мегаватт

Солнечные батареи оказались практически единственным источником электроэнергии за пределами Земли. Ими оснащаются все космические аппараты. Когда Солнце освещает их, они вырабатывают электроэнергию, которая аккумулируется бортовыми батареями и используется для питания оборудования в тех местах, где свет недосягаем. В отличие от атомных электрогенераторов они не выделяют вредных веществ [5].

Солнечные батареи обеспечивают электроэнергией МКС

Солнечные батареи нашли применение и в наземном транспорте. Не так давно компания Toyota стартовала продажи своей модели Prius, оборудованной гибридным двигателем. На крыше автомобиля нового поколения располагаются солнечные батареи, от которых тот при внезапно закончившемся топливе сможет проехать ещё километров 5.

Автомобиль на солнечных батареях экологически безопасен и беспрецедентно экономичен

Солнечные батареи для бытовых нужд

Встретить солнечные батареи в рознице по разумной цене становится всё проще. На глаза они попадаются, как в виде отдельных, работающих в качестве резервного источника питания устройств, так и встраиваются в различные приборы. Например, многие помнят, как в нашу жизнь вторглись калькуляторы, практически сразу получившие небольшие панели, позволяющие им работать без батареек, лишь попав на свет.

Калькулятор на солнечных батареях может работать всегда и везде, где есть свет

Разработчики устройств, которые могут работать от альтернативных источников электроэнергии пошли ещё дальше. На свет появились аккумуляторные фонарики, которые днем можно зарядить, просто положив встроенной солнечной батареей на свет, а в темное время суток пользоваться как обычно. Получается, по сути, универсальный спутник для путешествий, способный придти на помощь там, куда не добрался электрический ток. Не менее интересным оказался проект корейской компании Samsung, представившей на свет свой недорогой мобильник E1107 Crest Solar, задняя стенка которого получила небольшую солнечную панель, которой достаточно, чтобы пополнять заряд аккумулятора без подключения к сети. При положительном балансе на счету и в зоне действия операторов без связи с этим телефоном остаться просто невозможно [5].

Мобильный телефон Samsung E1107 Crest Solar оснащен солнечными батареями

Впрочем, если мобильный телефон, смартфон, ноутбук или другое устройство не получило от производителя альтернативного зарядного устройства на солнечных батареях, всегда можно восполнить этот недостаток. Как раз для таких случаев продаются внешние солнечные панели, многие из которых могут накапливать электроэнергию во встроенных или входящих в комплект поставки аккумуляторах, а затем отдавать её подключаемым устройствам. Такими переносными солнечными электростанциями очень часто оснащаются походные сумки и рюкзаки, а стоят они не намного дороже обычных моделей, без которых не обходится ни один туристический поход [5].

Внешняя солнечная батарея для питания мобильных телефонов и других компактных устройств

ГЛАВА 2 ЭКСПЕРИМЕНТ С СОЛНЕЧНЫМИ БАТАРЕЯМИ
§1 Описание эксперимента

Целью экспериментальной части работы являлось измерить напряжение на зажимах солнечной батареи от дачного светильника при различных условиях:

  • Меняя угол наклона батареи относительно Солнца
  • Меняя площадь поверхности батареи
  • Меняя высоту источника над батареей (использовался фонарик).

При работе использовался светильник для дачи фирмы «ИЗУМРУД»

Также в эксперименте были задействованы калькуляторы фирмы Canon и PROFF, имеющие солнечные батареи, для изучения его работоспособности при зарядке/разрядке батареи.

§2 Анализ полученных данных

В первом опыте измерялось напряжение на зажимах солнечной батареи в зависимости от её положения относительно Солнца. На фотографиях продемонстрировано, как подключался вольтметр (мультиметр) к батарее и какое оборудование использовалось в опыте.

Положения батареи показаны на рисунке:

Показания вольтметра представлены в таблице:

Источник

Оцените статью